N MIAMI AVENUE AND N 163 STREET INTERSECTION SAFETY ANALYSIS

GPC VII - Work Order \#32

N MIAMI AVENUE AND
N 163 STREET INTERSECTION SAFETY ANALYSIS GPC VIII - Work Order \#32

August 5, 2021

TABLE OF CONTENTS

PROJECT OVERVIEW 1
EXISTING CONDITIONS 2
Intersection Geometry 2
Field Observations 4
TRAFFIC DATA COLLECTION 6
Mechanical Traffic Counts 6
Manual Turning Movement Counts 8
CRASH ANALYSIS 9
SIGNAL WARRANT ANALYSIS 13
INTERSECTION CONTROL EVALUATION 14
ICE Stage 1 14
OPERATIONAL ANALYSIS 16
PROPOSED IMPROVEMENTS 17
Concept Development 17
Opinion of Probable Cost 19
Benefit/Cost 20
STAKEHOLDER COORDINATION 21
SUMMARY 22

List of Figures

Figure 1: Condition Diagram 3
Figure 2: Southbound view of N Miami Avenue and N 163 Street 4
Figure 3: Skid Marks at N Miami Avenue and N 163 Street (northbound view of N Miami Avenue) 5
Figure 4: 72-hour Average Vehicle Counts 7
Figure 5: Turning Movement Counts by Peak Hour. 8
Figure 6: Collision Diagram (SSOGis for 2016-2018) 10
Figure 7: Collision Diagram (Signal Four Analytics for 2016-2020) 11
Figure 8: Mini-Roundabout Concept 18
Figure 9: Roundabout Diagram 19
List of Tables
Table 1: Existing Control Type (TWSC) 2045 Predicted, Observed, and Expected Crashes Per Year 12
Table 2: Stage 1 ICE Results 14
Table 3: 2045 AM and PM Peak Hour Intersection Operational Analysis. 16
Table 4: Opinion of Probable Cost 19
Table 5: ICE Tool Benefit/Cost Analysis Results 20

List of Appendices

Appendix A. Field Observation Report
Appendix B. Bi-Directional 72-Hour Counts
Appendix C. Turning Movement Counts (AM and PM)
Appendix D. Crash Summary
Appendix E. Signal Warrant Analysis
Appendix F. ICE Stage 1
Appendix G. Operational Analysis Report Outputs
Appendix H. Design Checks
Appendix I. Opinion of Probable Cost
Appendix J. Benefit/Cost Analysis
Appendix K. FDOT Electronic Review Comments (ERC)

PROJECT OVERVIEW

On March 18, 2021, the Miami-Dade Transportation Planning Organization (TPO) Governing Board adopted resolution \#12-2021 ratifying the issuance of notice to proceed for the scope of services and budget to conduct a safety analysis for Miami-Dade County safety improvements projects. The TPO is advancing three intersections identified in the TPO's adopted Fiscal Year 2026 List of Program Priorities (LOPP) and prioritized by the Miami-Dade Department of Transportation and Public Works (DTPW) for Safety Program funding. These locations are considered off-system since they are not located on the State Highway System (SHS).

This report addresses one of the selected projects submitted to the Florida Department of Transportation (FDOT) District Six Safety Program for off-system facilities funding.

An Intersection Safety Analysis was conducted at North (N) Miami Avenue and North (N) 163 Street, located in unincorporated Miami-Dade County. The intersection was identified as a roadway safety improvement project under the TPO Fiscal Year 2026 LOPP approved June 18, 2020 and included in the newly approved 2027 LOPP on June 17, 2021. Miami-Dade DTPW prioritized improvements for this intersection due to an existing pattern of angle and left turn crashes.

The study's Purpose \& Need is to reduce crashes, most importantly fatalities and serious injuries, by evaluating the intersection and providing justification to apply for Highway Safety Improvement Program (HSIP) funding. The HSIP is a data driven program. As such, proposed projects need to meet eligibility requirements through crash and operational analysis and must demonstrate a benefit-cost ratio a (B / C) greater than 1 and a positive net present value (NPV). The study analysis, results, and proposed improvements will be presented to the Florida Department of Transportation (FDOT) District Six for evaluation of eligibility and prioritization based on the analysis results.

N Miami Avenue and $N 163$ Street is a two-way stop-controled (TWSC) intersection with the east/west approaches operating as stop-controlled. N Miami Avenue and N 163 Street are two-lane roads with each approach consisting of a single shared left/through/right lane.

This report documents the findings of field observations, data collection, crash data analysis, and detailed traffic operations analysis conducted at the study intersection to evaluate the existing safety and operational issues. This report provides a concept for consideration and opinion of probable cost for the implementation of the suggested improvements. In addition, a benefit-cost comparison is provided to determine the project eligibility for HSIP funding ($B / C>1$ and +NPV). The findings have been reviewed by Miami-Dade DTPW and FDOT. FDOT's Electronic Review Comments (ERC) and the response to comments are provided in Appendix K.

Page 1

EXISTING CONDITIONS

A field review was conducted at the study intersection to document existing roadway and safety conditions, as well as traffic operations. Within the study limits, N Miami Avenue is a north-south, two-lane undivided roadway, classified as Urban Minor Arterial with 11-foot lanes and a posted speed limit of 30 miles per hour (mph) within the vicinity of study intersection. N 163 Street is an east-west, two-lane undivided urban local roadway, with 10-foot lanes and a posted speed limit of 30 mph .

Intersection Geometry

The approach lane configuration for each of the four (4) intersection legs consists of a single shared left/through/right lane.

Sidewalk presence is inconsistent in the vicinity of the study intersection. Sidewalk is present along the north side of the west leg and ends approximately 50 feet west of the intersection, and sidewalk is present on the south side of the east leg and ends approximately 110 feet east of the intersection. There is no sidewalk along N Miami Avenue except for the north leg, on the east side where there is a sidewalk stretch of approximately 140 feet. There are no marked crosswalks at the intersection.

Miami-Dade Transit (MDT) route 2 runs along N Miami Avenue through the intersection. There are stops located on both sides of N Miami Avenue approximately 300 feet north and south of the intersection. N Miami Avenue is marked with "sharrow" pavement markings in the northbound and southbound directions. There were no pedestrians or bicyclists observed at the intersection during the field review. Refer to the turning movement count data under Traffic Data Collection for pedestrian and bicyclist volumes reported during the peak hours. Roadway lighting is present along $N 163$ Street. The land use surrounding the intersection is single family residential, and the surrounding area near the intersection is built out.

The roadway context classification in the vicinity of the intersection is Urban General (C4).
Figure 1 shows the condition diagram detailing existing field conditions. The diagram shows the intersection and the conditions within the surrounding area including the intersection alignment, residential buildings from aerial, sidewalks, trees, utility poles, lighting poles, water hydrants, stop signs, and lane configuration.

Field Observations

A field review was conducted on Friday, March 19, 2021 during the midday period to observe site characteristics, document findings and identify potential intersection improvements to reduce angle and left turn crashes and improve safety overall. The field observation report is provided in Appendix A. The following field observations were made:

- The study intersection is located approximately halfway along a 0.5 mile stretch of N Miami Avenue that is uncontrolled in the northbound and southbound directions. This layout provides opportunity for high vehicular speeds as vehicles travel through the residential neighborhood. Figure $\mathbf{2}$ illustrates the general setting for N Miami Avenue at the study intersection.

Figure 2: Southbound view of N Miami Avenue and N 163 Street

Page 4

- Tire skid marks were observed in the middle of the intersection from Google Street View, dated December 2020. See Figure 3.

Figure 3: Skid Marks at N Miami Avenue and N 163 Street (northbound view of N Miami Avenue)

Source: Google Earth Street View, December 2020

TRAFFIC DATA COLLECTION

Mechanical Traffic Counts

Mechanical traffic counts or bi-directional tube counts were collected on all four approaches of the intersection over a 72-hour period (from Tuesday, March 16, 2021 to Thursday, March 18, 2021). Figure 4 shows the average variation of hourly traffic volume versus the time of day for a typical weekday (Tuesday, Wednesday, and Thursday).

The eastbound and southbound volumes were observed to have lower variability throughout the day when compared to the northbound and westbound traffic volumes. The 72-hour data yielded the following observations:

- The intersection peak hours are 8:15 AM to 9:15 AM and 5:00 PM to 6:00 PM.
- The northbound approach is the peak traffic direction at the study intersection, and it experiences a peak from 7:45 AM to 9:45 AM and from 4:00 PM to 6:00 PM.

Detailed results of the 72-hour counts are included in Appendix B.

Figure 4: 72-hour Average Vehicle Counts

Manual Turning Movement Counts

Video recordings of the intersection turning movements were collected simultaneously during the 72-hour counts. A review of the 72-hour counts helped identify the peak periods to collect four-hour turning movement counts (TMCs). Detailed results of the TMCs are included in Appendix C.

Once the peak periods were identified from the 72-hour counts, the video recordings were used to collect and summarize the TMCs at the study intersection. The TMCs were collected on March 17, 2021 from 7:45 AM to 9:45 AM and from 4:00 PM to 6:00 PM. Pedestrian and bicyclist counts were included in the TMCs during the same four hours.

Figure 5 shows the volumes and approach truck percentages for the AM peak hour (8:15 AM to 9:15 AM), PM peak hour (5:00 PM to 6:00 PM) and reported pedestrian / bicyclist crossings.

Figure 5: Turning Movement Counts by Peak Hour

CRASH ANALYSIS

The most current five years of crash data were analyzed for the N Miami Avenue and N 163 Street intersection. The data was obtained from the FDOT's State Safety Office Geographic interface software (SSOGis) and Signal Four Analytics (S4). SSOGis provided verified crash data for 2016-2018 and data from S4 was used to supplement the SSOGis for 2016-2020. The supplement of $S 4$ data was included in the analysis to verify if crash trends and crash patterns continued in the most recent years.

Note that while $S 4$ data is not verified in its raw format, the data for this study was manually verified through a detailed review of the police reports.

The following findings were observed during the five-year analysis:

- A total of 27 crashes were reported within the influence area of the study intersection: six crashes in 2016, five crashes in 2017, five crashes in 2018, six crashes in 2019, and five crashes in 2020.
- The crash peak period (3:00-6:00 PM) coincides with the PM vehicular peak hour identified through traffic data collection.
- Angle (23 crashes / 85 percent) was the highest frequency crash type within the study area.
- Nine of the 23 angle crashes involved westbound vehicles colliding with southbound vehicles. The westbound approach is stop controlled.
- Seven of the 23 angle crashes involved eastbound vehicles colliding with southbound vehicles. The eastbound approach is stop controlled.
- Four of the 23 angle crashes involved westbound vehicles colliding with northbound vehicles. The westbound approach is stop controlled.
- Three of the 23 angle crashes involved eastbound vehicles colliding with northbound vehicles. The eastbound approach is stop controlled.
- Five or more angle crashes occurred within three separate 12-month periods. Five angle crashes occurred during 2016, 2017, and 2020.
- One fatal crash was reported in 2018 (4 percent). The fatal crash was an angle crash involving a westbound vehicle and a southbound vehicle. The crash occurred during daylight under dry pavement conditions. Aside from the fatality, 6 people were injured in this crash.
- Seven injury crashes were reported (26 percent). All seven injury crashes were angle crashes with three of these reported in 2020.
- Rear-end and fixed object reported one crash each and head-on reported two crashes during the study period. All four crashes were property damage only.
- There were no reported pedestrian or bicycle crashes within the study area.
- Three crashes (11 percent) occurred under nighttime conditions (dusk, dawn, or dark).
- Two crashes (seven percent) occurred under wet pavement conditions.

All years of crash data were reviewed to identify trends and potential indicators of a need to change the control type at the study intersection. A SSOGis collision diagram for the crashes during the study period (2016 - 2018) is provided in Figure 6. Figure 7 presents the collision diagram for crash data obtained from $\$ 4$.

A summary of the crash data is provided in Appendix \mathbf{D}.

Page 9

Collision Diagram at N Miami Avenue $\mathbf{N} 163$ Street (Source: SSOGIS 2016-2018)

Collision Diagram at N Miami Avenue $\mathbf{N} 163$ Street (Source: S4 2016-2020)

A safety performance evaluation was conducted for the existing intersection configuration of two-way stopcontrolled (TWSC) using FDOT's Safety Performance for Intersection Control Evaluation (SPICE) tool. The number of design year 2045 predicted, observed, and expected crashes per year are displayed in Table $\mathbf{1}$.

The number of observed crashes per year represents the average number of crashes per year based on the collected 2016-2018 historical crash data. Calibrated Safety Performance Functions (SPFs) were used to determine the number of predicted crashes per year based on the existing intersection control type. SPFs are developed to analyze locations with similar characteristics including intersection control type and can be applied to state, county, and local roadways. The number of expected crashes per year is developed using empirical Bayes method which applies a weighting factor to the predicted number of crashes based on the observed historical crash data.

The observed crashes per year represents the number of crashes that occurred. The predicted crashes per year represents the number of crashes that are generally predicted to occur based on the intersection control type. The expected crashes per year represents the number of crashes that would be expected based on the intersection control type and historical crash data.

Per the results obtained, the number of crashes observed is higher when compared to the predicted number of crashes for the existing intersection control type (TWSC).

Table 1: Existing Control Type (TWSC) Year 2045 Predicted, Observed, and Expected Crashes Per Year

Crash Severity	Predicted Crashes/Year	Observed Crashes/Year	Expected Crashes/Year	Potential for Safety Improvements /Year
Property Damage Only	1.92	3.80	3.30	1.38
Fatal and Injury	1.18	1.60	1.33	0.15
Total	$\mathbf{3 . 1 0}$	$\mathbf{5 . 4 0}$	$\mathbf{4 . 6 3}$	$\mathbf{1 . 5 3}$

The existing intersection configuration experienced higher than predicted and expected crashes per year for property damage only (PDO) and fatal and injury (F\&l) crashes during the study period. The potential for safety improvement for the existing configuration is determined as the difference between the number of expected crashes and number of predicted crashes. For this study period, the potential for safety improvement is 1.38 PDO and $0.15 \mathrm{~F} \& \mathrm{l}$ crashes per year.

Page 12

SIGNAL WARRANT ANALYSIS

A signal warrant analysis was performed at the study intersection to evaluate the need for traffic signal. The traffic signal warrant analysis was conducted in conformance with the requirements of the Federal Highway Administration (FHWA) Manual on Uniform Control Devices (MUTCD) and the FDOT Manual on Uniform Traffic Studies (MUTS). Guidance from the MUTCD indicates that a traffic signal is warranted if one or more warrants is met. The following warrants are applicable at the study intersection:

- Warrant 1 - Eight-Hour Vehicular Volume
- Warrant 2 - Four-Hour Vehicular Volume
- Warrant 7 - Crash Experience

Warrant 1, Condition A and Condition B are not met at the study intersection based on the highest eight hours of traffic volumes.

Warrant 2 is not met based on the highest four hours of traffic volumes.

Warrant 7 is not met based on criteria 1 - adequate trial of remedial measures and criteria 3 - volume warrants. Although Warrant 7 is not met, the intersection does meet criteria 2 - correctable crashes, with five or more angle crashes in a 12-month period. Five angle crashes occurred during 2016, 2017, and 2020. This suggests that an intersection improvement is needed to correct the existing safety issue.

Based on the signal warrant analysis, a signal is not warranted at the intersection of N Miami Avenue and N 163 Street. The signal warrant forms are provided in Appendix E.

INTERSECTION CONTROL EVALUATION

Intersection Control Evaluation (ICE) is an evaluation process or methodology used to consider multiple context-sensitive intersection control strategies when planning a new or modified intersection. The goal of ICE is to provide a quantitative decision-making process to identify and select a control strategy that fits the location's context, provides safe travel facilities for all road users, and offers the best overall value. An ICE analysis was performed at the intersection of N Miami Avenue and N 163 Street.

ICE Stage 1

ICE Stage 1 involves two analysis components: 1) A planning level volume-to-capacity (V/C) ratio assessment using the Capacity Analysis at Junctions (CAP-X) tool; and 2) a planning level safety assessment using Safety Performance for Intersection Control Evaluation (SPICE). These assessments are high level in nature, due to the potentially numerous intersection control types that need to be reviewed during the ICE Stage 1 evaluation. Although the intersection does not meet signal warrants, the traffic signal was considered as part of the ICE Stage 1 analysis for comparison. The following intersection control types were evaluated in ICE Stage 1 at the study intersections including the No-Build condition:

- Two-Way Stop Control (TWSC) - No-Build
- All-Way Stop Control (AWSC)
- Signalized Control
- 1×1 Roundabout (one-lane major road and one-lane minor road)
- 50' Inscribed Circle Diameter (ICD) Mini-Roundabout
- 75' ICD Mini-Roundabout

Each control type was compared operationally using a planning level V/C ratio and for safety based on existing 2021 volumes. The V/C ratio is a comparison of the expected traffic volume to intersection capacity. The safety ranking is based upon a predicted number of total and fatal/injury crashes based upon the design year (2045) traffic volumes. A safety ranking of 1 denotes a lower predicted number of fatal/injury crashes while a higher ranking denotes a higher predicted number of fatal/injury crashes when compared to the other alternatives. Note that the roundabout alternatives are ranked ahead of the AWSC alternative due to having a lower number of predicted fatal and injury crashes. Table 2 provides a comparison of the Stage 1 V/C ratio, safety ranking, and predicted crashes for the alternatives evaluated. ICE Stage 1 CAP-X and SPICE outputs are included in Appendix F.

Table 2: Stage 1 ICE Results

Control Strategy	V/C		Safeły Ranking	Design Year Predicted Crashes/Year	
	AM	PM		Total	Fatal \& Injury
Traffic Signal	0.10	0.17	3	3.53	1.14
TWSC (No-Build)	0.14	0.25	4	3.10	1.18
AWSC	0.44	0.66	2	1.25	0.40
1x1 Roundabout	0.19	0.34	1	1.43	0.25
50' ICD Mini-Roundabout	0.26	0.45	1	1.43	0.25
75' ICD Mini-Roundabout	0.25	0.45	1	1.43	0.25

Following the completion of the ICE Stage 1 analysis, the alternatives were compared. The traffic signal alternative has the best V/C ratio, but a higher number of predicted crashes when compared to the AWSC and roundabout alternatives. Additionally, the intersection does not meet traffic signal warrants.

The No-Build TWSC condition is predicted to have more than four times the number of fatal and injury crashes compared to the roundabout alternatives. The No-Build does not meet the Purpose \& Need for the intersection evaluation.

The AWSC had a lower number of predicted crashes, but a higher V/C ratio when compared to the No-Build.
The roundabout alternatives have higher V/C ratios when compared to the No-Build condition but provide the lowest numbers of predicted fatal and injury crashes.

Due to the safety emphasis of the project, the roundabout alternative was selected as the preferred alternative following the completion of ICE Stage 1. ICE Stage 2 is not needed.

The mini-roundabout was selected for concept development due to a balance of right-of-way (ROW) constraints and design vehicle access. The concept is discussed in greater detail in the Concept Development section in this report.

OPERATIONAL ANALYSIS

A detailed Level of Service (LOS) analysis was conducted to compare the existing two-way stop control intersection with a mini-roundabout. The alternatives were evaluated using future 2045 weekday AM and PM peak hour traffic volume conditions. The land use surrounding the intersection consists of single family residential. Low traffic volume growth is anticipated due to the surrounding land use being fully built-out. A growth rate of 1.0 percent was selected as a conservative estimate to develop future volumes. The 2045 volumes were developed by applying a linear 1.0 percent growth rate to all movements. The No-Build scenario (TWSC) was evaluated in Synchro Version 10 using Highway Capacity Manual (HCM) $6^{\text {th }}$ Edition methodologies.

The mini-roundabout alternative was evaluated in SIDRA Intersection 8.0 using HCM 2010 methodologies. The purpose of using HCM 2010 for the mini-roundabout analysis was to develop a more conservative capacity analysis. HCM 2010 capacity model is based upon older US data collected in 2006 which found that drivers frequently tended to come to a full stop even in the absence of conflicting traffic which generated lower capacities compared to international models. More recent data collected feeding into the latest HCM $6^{\text {th }}$ Edition model found that roundabout capacities in the US have increased over time and the HCM $6^{\text {th }}$ Edition now estimates higher capacity. There is not a widely accepted capacity model for mini-roundabouts currently available in the US. While not specifically intended for mini-roundabouts, use of the HCM 2010 model will generate a lower capacity estimate (more conservative) than the HCM $6^{\text {th }}$ Edition. Due to miniroundabouts having lower capacity than full size roundabouts, HCM 2010 was used to provide a more conservative estimate of the mini-roundabout capacity.

Table 3 provides the results comparison of the operational analysis. The northbound and southbound approaches operate at LOS A in both peak hours and the eastbound and westbound approaches operate at LOS C or LOS B in both peak hour under the No-Build scenario. The mini-roundabout operates at LOS A in both peak hours for all intersection approaches, except for the northbound approach in the PM peak hour which operates at LOS B. The operational analysis report outputs are provided in Appendix G.

Table 3: Year 2045 AM and PM Peak Hour Intersection Operational Analysis

Scenario			Eastbound	Westbound	Northbound	Southbound
AM Peak Hour	TWSC (No-Build) *	Delay	15.1	13.7	7.6	7.9
		LOS	C	B	A	A
		V/C	0.19	0.14	0.00	0.01
	Mini-Roundabout	Delay	4.9	5.2	6.8	5.3
		LOS	A	A	A	A
		V/C	0.09	0.08	0.31	0.20
PM Peak Hour	TWSC (No-Build) *	Delay	24.4	19.9	7.7	8.5
		LOS	C	C	A	A
		V/C	0.33	0.35	0.01	0.02
	Mini-Roundabout	Delay	5.3	8.2	10.4	5.8
		LOS	A	A	B	A
		V/C	0.11	0.21	0.54	0.24

*For the TWSC scenario, delay, LOS, and V/C ratio are reported for the left-turn movement only.

Page 16

PROPOSED IMPROVEMENTS

The No-Build TWSC, AWSC, and roundabout scenarios were evaluated through ICE Stage 1. The mini-roundabout was identified as the preferred alternative based on safety performance. Due to ROW constraints and the intersection context, a mini-roundabout was determined to be the best alternative. The following section describes the development of a planning level concept and opinion of probable cost for a mini-roundabout at N Miami Avenue and N 163 Street.

Concept Development

A planning level concept was developed for the mini-roundabout alternative to understand impacts and to be able to develop opinion of probable cost for use in a benefit-cost analysis. The concept is provided in
Figure 8. The concept incorporates the following elements:

- 75 ' inscribed circle diameter. Figure 9 provides a diagram showing how the inscribed circle diameter is measured.
- 15^{\prime} circulatory roadway width. Figure 9 provides a diagram showing how the circulatory roadway is measured.
- Raised splitter islands on all four approaches with pedestrian refuges.
- The design vehicle used was a 34' Fire Pumper Tanker.
- Light poles will be added to each corner of the intersection.
- Entry speeds were designed for 25 mph to provide low speeds for bicyclists to travel through the roundabout with vehicular traffic.

The proposed concept has the following impacts to the existing conditions:

- Utility relocation
- Wood utility pole (1)
- Telephone pedestal (1)
- Valve assembly (3)
- Drainage
- Sediment barrier

The concept stays within the existing ROW and provides new sidewalk connections on all four legs. Fastest path and design vehicle checks are provided in Appendix H.

Figure 9: Roundabout Diagram

Source: NCHRP Report 672, Page 6-9

Opinion of Probable Cost

An opinion of probable cost was developed based on the planning level concept. A 30% contingency cost was included. A detailed cost estimate is provided in Appendix I.

Table 4 provides a summary of the opinion of probable cost based on the mini-roundabout concept.

Table 4: Opinion of Probable Cost

Cost Item	Cost
Total Estimated Construction Costs	$\$ 299,069$
Total Estimated Capital Support Costs	$\$ 143,570$
Total Estimated Right-of-Way Costs	$\$ 0$
Total Project Cost	$\$ 442,639$

Benefit/Cost

The FDOT ICE Tool was used to conduct a benefit/cost analysis. The ICE Tool is used to compare the operational and safety analyses, along with the opinion of probable cost to develop a benefit/cost ratio (B/C) and net present value (NPV) of the alternative. The ICE Tool results are provided in Appendix J.

Table 5 provides the ICE Tool delay, safety, and overall B/C analysis results as well as the estimated NPV of the alternative. The overall benefit/cost is 11.13.

Table 5: ICE Tool Benefit/Cost Analysis Results

Alternative	Overall B/C	Delay B/C	Safety B/C	Net Present Value
Mini-Roundabout	11.13	1.87	9.26	$\$ 5,074,817$

STAKEHOLDER COORDINATION

The study team conducted coordination meetings with Miami Dade County Public Works (DTPW) Traffic Operations and Traffic Engineering Divisions to discuss the selection of the study intersection and proposed mini-roundabout alternative. The following meetings were held with County staff to discuss the selection of the study intersection and evaluation and concept development:

- March 8, 2021 - a meeting was held to kick-off the project and discuss the study intersection selection process.
- April 1, 2021 - a meeting was held to discuss the selection of study intersections. The County identified 13 intersections for safety analysis. The 13 locations were reviewed and the top three were identified based on historical crash data and potential safety benefit. N Miami Avenue and N 163 Street was selected as one of the three study intersections. Discussion included a review of the County proposed recommendations. The County's proposed recommendations were implemented into the concept development presented in this report.
- April 12, 2021 - a meeting was held to discuss data collection and the design vehicle to be used for the concept development.
- A 34' Fire Pumper Tanker was selected as the design vehicle.
- April 20, 2021 - a meeting was held to review and receive input on design aspects of the concept development.
- April 23, 2021 - a meeting was held to provide further details on the concept development and discuss anticipated impacts of the mini-roundabout.

DTPW staff is in support of the proposed alternative.

SUMMARY

An Intersection Safety Analysis was conducted at N Miami Avenue and N 163 Street, located in Miami-Dade County. The intersection was identified as a roadway safety improvement project under the TPO Fiscal Year 2026 List of Program Priorities approved June 18, 2020 and included in the newly approved 2027 LOPP on June 17, 2021. Improvements for this intersection were prioritized for evaluation due to an existing pattern of angle crashes. The Purpose \& Need of the study is to reduce crashes, most importantly fatalities and serious injuries, by evaluating the intersection and providing justification to apply for Highway Safety Improvement Program (HSIP) funding.

An ICE Stage 1 analysis was conducted to determine the best control type for the intersection. A miniroundabout was identified as the preferred alternative. There are no right-of-way impacts anticipated with the proposed mini-roundabout design.

A benefit/cost analysis shows an overall benefit of 11.13 with a delay benefit of 1.87 and a safety benefit of 9.26 when compared to the No-Build condition. The net present value of the alternative is $\$ 5,074,817$. The safety benefit/cost ratio is greater than 1.0 and the net present value is positive, which meets the requirements for HSIP funding.

APPENDIX A. FIELD OBSERVATION REPORT

FIELD OBSERVATION REPORT

Location	N Miami Avenue \& N 163 Street	Date	March 19, 2021
Observer	KAI	Time	

PART I - PHYSICAL CHECKLIST

NO YES COMMENTS

1. Are there sight distance obstructions to:
a. Traffic control devices?
b. Intersections and driveways?
c. Turning or on-coming vehicles? \qquad
2. Does parking affect:
a. Sight distance?
b. Through or turning vehicle paths?
$\frac{\mathrm{X}}{\mathrm{X}}-$
\qquad

X
X
Is pavement width or the number of lanes
5. inadequate?
6. Are intersection or driveway radii too short?
X

X
X \qquad
7. Are there problems with driveways such as:
a. Inadequate design?
b. Location near major intersection?
c. Too many driveways?

X
X
X

\qquad
\qquad
\qquad

X
X

\qquad
\qquad
b. Separating traffic flows or defining movements?
9. Should pedestrian crosswalks be:
a. Added? \qquad
Crosswalks missing on all four legs - to be added in traffic circle concept.
b. Relocated or repainted? \qquad
X
\qquad
\qquad
10. Are there problems with traffic signs such as:
a. Inadequate or improper message?
b. Too many signs?
c. Placement or size?
11. Are there problems with traffic signals such as:
a. Timing?
b. Number of signal heads?
c. Placement or size?
12. Are there problems with pavement markings such as:
a. Vehicle paths not clearly marked?
b. Location of the markings?
13. Do posted speed limits appear to be too high or too low for conditions?
14. Does the pavement condition (potholes, irregular surface, etc. appear to contribute to safety problems?
15. Is roadway lighting inadequate?
16. Are there tire skid marks on pavement?
17. Is there evidence of vehicle accident debris such as scar marks on trees, utility poles, embankments or other objects?
18. Is there an abundance of vehicle accident debris such as small pieces of crushed glass, plastic, etc. along the shoulder or in the median area?

\square		
\square	$=$	N / A
\square	N / A	

FIELD OBSERVATION REPORT

PART II - OPERATIONAL CHECKLIST

| 1.Do obstructions block the driver's view of
 opposing or conflicting vehicles? | |
| :--- | :--- | :--- | :--- | :--- |
| 2.Do drivers have trouble finding the correct path
 through the location? | |

4. Do steep grades create large speed differences?
5. Are pavement surface conditions creating erratic driver movements?
6. Does the presence of existing driveways contribute to erratic driver movements?

Is excessive vehicle delay creating unsafe risk taking by motorists?

X \qquad
8. Are there large speed differences between vehicles:
a. Traveling through the location?
b. Turning at driveways or intersections?
$\frac{X}{X}$
\qquad
\qquad
\qquad
\qquad
9. Do drivers respond incorrectly to:
a. Signals? \qquad
\qquad
b. Signs or other traffic control devices? \qquad

FIELD OBSERVATION REPORT

NO YES COMMENTS
10. Are problems being caused by the volume of:
a. Through traffic?
b. Turning traffic?
11. Do pedestrian movements create conflicts?
12. Do bicycle movements create conflicts?

Is there considerable weaving or lane changing
13. by drivers at the location?
14. Are there violations of parking at the location?

Are there violations of other traffic control
15. devices or regulations such as:
a. Running red light?
b. Failing to stop or yield the right-of-way?
c. Speed limits?
d. Right-turn-on-red?
e. Other?

Are there traffic flow problems or traffic conflict
16. patterns associated with turning vehicles?

Are there any other unusual traffic flow problems
17. or traffic conflict patterns?

Does inadequate lighting cause drivers to slow
18. down or create erratic maneuvers?

Do transit operations create conflicts / excessive
19. delays.

X		
	X	High number of recorded angle and left turn crashes.
X		
X		
X		

High number of recorded angle and left turn crashes.
\qquad
\qquad

X \qquad

X \qquad

NOTES:

APPENDIX B. BI-DIRECTIONAL 72-HOUR COUNTS

```
County: 87
Station: 1631
Description: N MIAMI AVE N OF NE 163RD ST
Start Date: 03/16/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: N		Direction: S		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	745	258	815	171	815	425
P.M.	1615	468	1630	202	1630	657
Daily	1615	468	1630	202	1630	657

Generated by SPS 5.0.49P

```
County: 87
Station: 1631
Description: N MIAMI AVE N OF NE 163RD ST
Start Date: 03/17/2021
Start Time: 0000
```

Time	1st	$\begin{gathered} \mathrm{Di} \\ \text { 2nd } \end{gathered}$	tion: $3 \mathrm{rd}$	$\mathrm{N}_{4 \mathrm{th}}$	Total		1st	$\begin{gathered} \mathrm{Di} \\ \text { 2nd } \end{gathered}$	$\begin{aligned} & \text { Ction: } \\ & \text { 3rd } \end{aligned}$	$4 \text { th }$	Total	Combined Total
0000	7	10	14	7	38	I	21	16	10	9	56	94
0100	4	10	2	7	23	I	4	8	6	6	24	47
0200	2	6	7	2	17	,	4	5	2	2	13	30
0300	2	2	3	6	13	1	2	1	3	1	7	20
0400	4	3	2	3	12	1	2	3	4	2	11	23
0500	8	8	12	14	42	I	3	1	9	7	20	62
0600	18	10	29	32	89	I	11	13	13	25	62	151
0700	26	37	42	66	171	I	17	31	39	43	130	301
0800	68	64	70	66	268	1	35	46	36	36	153	421
0900	58	46	50	51	205	1	46	41	42	40	169	374
1000	49	39	52	50	190	,	37	27	43	40	147	337
1100	47	38	51	58	194	1	35	33	40	34	142	336
1200	50	59	54	62	225	1	48	39	36	35	158	383
1300	61	61	55	73	250	1	41	39	49	51	180	430
1400	72	93	71	89	325	1	49	29	36	38	152	477
1500	100	90	104	110	404	1	47	38	39	40	164	568
1600	123	128	115	109	475	,	42	29	40	39	150	625
1700	118	117	124	116	475	I	57	42	49	47	195	670
1800	99	109	85	70	363	1	54	40	47	39	180	543
1900	48	64	69	44	225	I	45	39	49	36	169	394
2000	48	46	42	27	163	1	52	29	33	24	138	301
2100	24	24	26	23	97	1	39	25	24	28	116	213
2200	37	32	26	18	113	I	23	20	15	12	70	1183
2300	22	16	13	18	69	1	20	16	11	16	63	132
24-Hour Totals:					4446						2669	7115

					Peak Volume Information	
	Direction: N		Direction: S		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	745	268	845	165	745	428
P.M.	1545	476	1700	195	1700	670
Daily	1545	476	1700	195	1700	670

Generated by SPS 5.0.49P

```
County: 87
Station: 1631
Description: N MIAMI AVE N OF NE 163RD ST
Start Date: 03/18/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: N		Direction: S		Combined	Directions
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	800	289	800	195	800	484
P.M.	1700	427	427	1730	198	615
Daily	1700		1730	198	1715	615

Generated by SPS 5.0.49P

```
County: 87
Station: 1633
Description: NE 163RD ST E OF N MIAMI AVE
Start Date: 03/16/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: E		Direction: W		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	815	63	745	56	800	110
P.M.	1445	47	1600	137	1515	173
Daily	815	63	1600	137	1515	173

Generated by SPS 5.0.49P

```
County: 87
Station: 1633
Description: NE 163RD ST E OF N MIAMI AVE
Start Date: 03/17/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction:		Direction: W		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	815	75	600	60	815	130
P.M.	1745	67	1545	157	1545	188
Daily	815	75	1545	157	1545	188

Generated by SPS 5.0.49P

```
County: 87
Station: 1633
Description: NE 163RD ST E OF N MIAMI AVE
Start Date: 03/18/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: E		Direction: W		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	745	60	800	53	800	112
P.M.	1330	53	1615	160	1630	201
Daily	745	60	1615	160	1630	201

Generated by SPS 5.0.49P

```
County: 87
Station: 1635
Description: N MIAMI AVE S OF NE 163RD ST
Start Date: 03/16/2021
Start Time: 0000
```


	Peak Volume Information					
	Direction: N		Direction: S		Combined	Directions
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	745	244	815	166	745	408
P.M.	1615	412	1630	215	1630	613
Daily	1615	412	1630	215	1630	613

Generated by SPS 5.0.49P

```
County: 87
Station: 1635
Description: N MIAMI AVE S OF NE 163RD ST
Start Date: 03/17/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: N		Direction: S		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	745	265	730	165	745	426
P.M.	1700	430	1645	202	1700	632
Daily	1700	430	1645	202	1700	632

Generated by SPS 5.0.49P

```
County: 87
Station: 1635
Description: N MIAMI AVE S OF NE 163RD ST
Start Date: 03/18/2021
Start Time: 0000
```

Time	1st	$\begin{gathered} \mathrm{Di} \\ \text { 2nd } \end{gathered}$	tion: $3 \mathrm{rd}$	$\mathrm{N}_{4 \mathrm{th}}$	Total		1st	$\begin{gathered} \mathrm{Di}_{1} \\ \text { 2nd } \end{gathered}$	tion: 3rd	$4 \text { th }$	Total	Combined Total
0000	23	13	7	4	47	I	12	11	7	7	37	84
0100	8	3	5	3	19	I	1	11	4	4	20	39
0200	2	5	3	0	10	,	1	2	1	2	6	16
0300	1	2	6	1	10	1	2	3	5	1	11	21
0400	2	8	3	5	18	1	4	1	2	1	8	26
0500	5	8	6	13	32	,	7	3	9	7	26	58
0600	6	23	23	21	73	I	10	10	17	19	56	129
0700	26	21	45	64	156	1	29	30	36	38	133	289
0800	77	58	76	68	279	1	45	48	56	43	192	471
0900	44	50	44	42	180	,	39	33	46	35	153	333
1000	40	38	52	42	172	I	30	30	36	28	124	296
1100	51	39	42	55	187	I	35	25	38	37	135	322
1200	41	37	49	47	174	I	26	34	42	38	140	314
1300	62	38	53	63	216	,	37	31	44	53	165	381
1400	57	70	77	80	284	I	42	52	43	56	193	477
1500	75	81	104	83	343	1	43	47	40	31	161	504
1600	99	82	93	85	359	1	61	44	38	39	182	541
1700	93	83	96	97	369	1	42	39	58	54	193	562
1800	93	98	78	65	334	1	45	45	47	52	189	1523
1900	57	52	39	39	187	1	43	27	38	35	143	330
2000	60	34	37	40	171	1	34	33	37	31	135	306
2100	42	49	37	21	149	I	26	32	24	14	96	245
2200	26	33	19	12	90	1	17	16	27	17	77	\| 167
2300	9	17	16	14	56	1	8	18	19	13	58	114
24-Hour Totals:					3915						2633	6548

					Peak Volume Information	
	Direction: N		Direction: S		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	800	279	800	192	800	471
P.M.	1730	384	1730	202	586	
Daily	1730	384	1730	202	1730	586

Generated by SPS 5.0.49P

```
County: 87
Station: 1637
Description: NE 163RD ST W OF N MIAMI AVE
Start Date: 03/16/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: E		Direction: W		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	815	65	730	41	800	100
P.M.	1330	46	1445	63	1330	106
Daily	815	65	1445	63	1330	106

Generated by SPS 5.0.49P

```
County: 87
Station: 1637
Description: NE 163RD ST W OF N MIAMI AVE
Start Date: 03/17/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: E		Direction: W		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	845	64	745	45	815	100
P.M.	1645	66	1415	65	1700	116
Daily	1645	66	1415	65	1700	116

Generated by SPS 5.0.49P

```
County: 87
Station: 1637
Description: NE 163RD ST W OF N MIAMI AVE
Start Date: 03/18/2021
Start Time: 0000
```


					Peak Volume Information	
	Direction: E		Direction: W		Combined Directions	
	Hour	Volume	Hour	Volume	Hour	Volume
A.M.	745	57	745	48	745	105
P.M.	1345	50	1700	95	1645	139
Daily	745	57	1700	95	1645	139

Generated by SPS 5.0.49P

APPENDIX C. TURNING MOVEMENT COUNTS (AM AND PM)

CTS Engineering, Inc 8095 NW 12 Street, Ste 301 Doral, FL 33126

CLIENT: MDC TPO
JOB NO.:TWO 3
PROJECT:N Miami Avenue and NE 163 Street
COUNTY:Miami-Dade

File Name : 2- N Miami Ave \& NE 163rd St
Site Code : 00000000
Start Date: 3/17/2021
Page No : 1

Groups Printed- Autos - Heavy Vehicles

	NE 163rd St Eastbound					NE 163rd St Westbound					N Miami Ave Northbound					N Miami Ave Southbound					
Start Time	U-Tuns	Left	Thru	Right	App. Toala	U-Tums	Left	Thru	Right	App. Toal	-Tuns	Left	Thru	Right	po. Toal	U-Tums	Left	Thru	Right	App. Toal	Int. Total
07:45 AM	0	0	8	5	13	0	1	5	3	9	0	3	64	1	68	0	0	37	3	40	130
Total	0	0	8	5	13	0	1	5	3	9	0	3	64	1	68	0	0	37	3	40	130
08:00 AM	0	1	9	1	11	0	2	8	4	14	0	1	60	2	63	0	1	34	1	36	124
08:15 AM	0	0	10	0	10	0	1	11	1	13	0	1	59	0	60	0	3	41	1	45	128
08:30 AM	0	2	15	0	17	0	7	6	3	16	0	1	65	4	70	0	2	32	2	36	139
08:45 AM	0	3	14	0	17	0	2	5	8	15	0	2	57	4	63	0	2	32	2	36	131
Total	0	6	48	1	55	0	12	30	16	58	0	5	241	10	256	0	8	139	6	153	522
09:00 AM	0	3	17	0	20	0	3	3	3	9	0	0	52	0	52	0	2	45	1	48	129
09:15 AM	0	0	12	1	13	0	0	2	3	5	0	0	46	0	46	0	1	36	3	40	104
09:30 AM	0	3	12	1	16	0	3	3	4	10	0	1	39	0	40	0	3	35	1	39	105
*** BREAK																					
Total	0	6	41	2	49	0	6	8	10	24	0	1	137	0	138	0	6	116	5	127	338

*** BREAK ***

04:00 PM	0	6	3	1	10	0	6	12	17	35	0	3	100	4	107	0	1	42		44	196
04:15 PM	0	2	5	2	9	0	5	8	19	32	0	0	107	1	108	0	1	25	2	28	177
04:30 PM	0	3	4	1	8	0	4	19	18	41	0	0	91	2	93	0	1	38	1	40	182
04:45 PM	0	6	4	2	12	0	5	8	16	29	0	0	82	3	85	0	1	35	3	39	165
Total	0	17	16	6	39	0	20	47	70	137	0	3	380	10	393	0	4	140	7	151	720
05:00 PM	0	6	11	1	18	0	5	9	15	29	0	3	96	1	100	0	3	54	0	57	204
05:15 PM	0	9	14	2	25	0	5	11	10	26	0	3	113	1	117	0	3	38	0	41	209
05:30 PM	0	9	5	2	16	0	5	9	11	25	0	0	105	4	109	0	1	49	0	50	200
05:45 PM	0	1	11	0	12	0	2	9	13	24	0	3	100	1	104	0	6	35	2	43	183
Total	0	25	41	5	71	0	17	38	49	104	0		414	7	430	0	13		2	191	796

Grand Total	0	54	154	19	227	0	56	128	148	332	0	21	1236	28	1285	0	31	608	23	662	2506
Apprch \%	0	23.8	67.8	8.4		0	16.9	38.6	44.6		0	1.6	96.2	2.2		0	4.7	91.8	3.5		
Total \%	0	2.2	6.1	0.8	9.1	0	2.2	5.1	5.9	13.2	0	0.8	49.3	1.1	51.3	0	1.2	24.3	0.9	26.4	
Autos	0	51	149	19	219	0	56	127	144	327	0	21	1210	28	1259	0	31	597	22	650	2455
\% Autos	0	94.4	96.8	100	96.5	0	100	99.2	97.3	98.5	0	100	97.9	100	98	0	100	98.2	95.7	98.2	98
Heavy Venicles	0	3	5	0	8	0	0	1	4	5	0	0	26	0	26	0	0	11	1	12	51
\% Heary venicles	0	5.6	3.2	0	3.5	0	0	0.8	2.7	1.5	0	0	2.1	0	2	0	0	1.8	4.3	1.8	2

CTS Engineering, Inc 8095 NW 12 Street, Ste 301 Doral, FL 33126

CLIENT: MDC TPO JOB NO.:TWO 3
PROJECT:N Miami Avenue and NE 163 Street
COUNTY:Miami-Dade

File Name : 2- N Miami Ave \& NE 163rd St
Site Code : 00000000
Start Date: 3/17/2021
Page No : 2

CTS Engineering, Inc 8095 NW 12 Street, Ste 301 Doral, FL 33126

CLIENT: MDC TPO
JOB NO.:TWO 3
PROJECT:N Miami Avenue and NE 163 Street COUNTY:Miami-Dade

File Name : 2- N Miami Ave \& NE 163rd St
Site Code : 00000000
Start Date : 3/17/2021
Page No : 3

	NE 163rd St Eastbound					NE 163rd St Westbound					N Miami Ave Northbound					N Miami Ave Southbound					
Start Time	urns	Left	Thru	Right	App. Total	U-Turns	Left	Thru	Right	Total	U-Turns	Left	Thru	Right	App. Total	U-Turns	Left	Thru	Right	App. Total	Total

Peak Hour Analysis From 07:45 AM to 11:45 AM - Peak 1 of 1
Peak Hour for Entire Intersection Begins at 08:15 AM

08:15 AM	0	0	10	0	10	0	1	11	1	13	0	1	59	0	60	0	3	41	1	45	128
08:30 AM	0	2	15	0	17	0	7	6	3	16	0	1	65	4	70	0	2	32	2	36	139
08:45 AM	0	3	14	0	17	0	2	5	8	15	0	2	57	4	63	0	2	32	2	36	131
09:00 AM	0	3	17	0	20	0	3	3	3	9	0	0	52	0	52	0	2	45	1	48	129
Total Volume	0	8	56	0	64	0	13	25	15	53	0	4	233	8	245	0	9	150	6	165	527
\% App. Total	0	12.5	87.5	0		0	24.5	47.2	28.3		0	1.6	95.1	3.3		0	5.5	90.9	3.6		
PHF	. 000	. 667	. 824	. 000	. 800	. 000	. 464	. 568	. 469	. 828	. 000	. 500	. 896	. 500	. 875	. 000	. 750	. 833	. 750	. 859	. 948
Autos	0	7	56	0	63	0	13	25	15	53	0	4	226	8	238	0	9	146	6	161	515
\% Autos	0	87.5	100	0	98.4	0	100	100	100	100	0	100	97.0	100	97.1	0	100	97.3	100	97.6	97.7
Heavy Vehicles	0	1	0	0	1	0	0	0	0	0	0	0	7	0	7	0	0	4	0	4	12
\% Heavy Vehicles	0	12.5	0	0	1.6	0	0	0	0	0	0	0	3.0	0	2.9	0	0	2.7	0	2.4	2.3

CTS Engineering, Inc 8095 NW 12 Street, Ste 301 Doral, FL 33126

CLIENT: MDC TPO
JOB NO.:TWO 3
PROJECT:N Miami Avenue and NE 163 Street
COUNTY:Miami-Dade

File Name : 2- N Miami Ave \& NE 163rd St
Site Code : 00000000
Start Date: 3/17/2021
Page No : 4

	NE 163rd St Eastbound					NE 163rd St Westbound					N Miami Ave Northbound					N Miami Ave Southbound					
Start Time	U-Turns	Left	Thru	Right	App. Total	U-Turn	Left	Thru	Right	App. Total	U-Turns	Left	Thru	Right	App. Total	U-Turns	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analysis From 12:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 05:00 PM																					
05:00 PM	0	6	11	1	18	0	5	9	15	29	0	3	96	1	100	0	3	54	0	57	204
05:15 PM	0	9	14	2	25	0	5	11	10	26	0	3	113	1	117	0	3	38	0	41	209
05:30 PM	0	9	5	2	16	0	5	9	11	25	0	0	105	4	109	0	1	49	0	50	200
05:45 PM	0	1	11	0	12	0	2	9	13	24	0	3	100	1	104	0	6	35	2	43	183
Total Volume	0	25	41	5	71	0	17	38	49	104	0	9	414	7	430	0	13	176	2	191	796
\% App. Total	0	35.2	57.7	7		0	16.3	36.5	47.1		0	2.1	96.3	1.6		0	6.8	92.1	1		
PHF	. 000	. 694	. 732	. 625	. 710	. 000	. 850	. 864	. 817	. 897	. 000	. 750	. 916	. 438	. 919	. 000	. 542	. 815	. 250	. 838	952
Autos	0	24	40	5	69	0	17	38	48	103	0	9	406	7	422	0	13	171	2	186	780
\% Autos	0	96.0	97.6	100	97.2	0	100	100	98.0	99.0	0	100	98.1	100	98.1	0	100	97.2	100	97.4	98.0
Heavy Vehicles	0	1	1	0	2	0	0	0	1	1	0	0	8	0	8	0	0	5	0	5	16
\% Heary Vehicles	0	4.0	2.4	0	2.8	0	0	0	2.0	1.0	0	0	1.9	0	1.9	0	0	2.8	0	2.6	2.0

CTS Engineering, Inc
 8095 NW 12 Street, Ste 301 Doral, FL 33126

CLIENT: MDC TPO
JOB NO.:TWO 3
PROJECT:N Miami Avenue and NE 163 Street
COUNTY:Miami-Dade

File Name : 2- N Miami Ave \& NE 163rd St
Site Code : 00000000
Start Date: 3/17/2021
Page No : 1

	NE 163rd St Fastbound					NE 163rd St Westbound					N Miami Ave Northbound					N Miami Ave Southbound					
Start Time	U-Turs	Left	Thru	Right	${ }_{\text {App }}$ Total	U-Tums	Left	Thru	Right	App. Toal	U-Tuns	Left	Thru	Right	App. Toal	U-Tums	Left	Thru	Right	App. Toal	Int. Total
07:45 AM	0	0	1	0	1	0	0	0	0	0	0	0	2	0	2	0	0	1	0	1	4
Total	0	0	1	0	1	0	0	0	0	0	0	0	2	0	2	0	0	1	0	1	4

08:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
$08: 15 \mathrm{AM}$	0	0	0	0	0	0	0	0	0	0	0	0	3	0	3	0	0	2	0	2	5
$08: 30 \mathrm{AM}$	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	3
$08: 45 \mathrm{AM}$	0	0	0	0	0	0	0	0	0	0	0	0	2	0	2	0	0	1	0	1	3
Total	0	1	0	0	1	0	0	0	0	0	0	0	6	0	6	0	0	4	1	5	12

*** BREAK ***

04:00 PM	0	0	0	0	0	0	0	1	1	2	0	0	1	0	1	0	0	0	0	0	3
$04: 15 \mathrm{PM}$	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	0	0	0	0	0	2
$04: 30 \mathrm{PM}$	0	1	0	0	1	0	0	0	1	1	0	0	4	0	4	0	0	0	0	0	6
$04: 45 \mathrm{PM}$	0	0	1	0	1	0	0	0	0	0	0	0	3	0	3	0	0	0	0	0	4
Total	0	1	1	0	2	0	0	1	3	4	0	0	9	0	9	0	0	0	0	0	15

05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	3	0	3	0	0	1	0	1	4
05:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	2	0	2	6
05:30 PM	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	2
05:45 PM	0	0	1	0	1	0	0	0	1	1	0	0	0	0	0	0	0	2	0	2	4
Total	0	1	1	0	2	0	0	0	1	1	0	0	8	0	8	0	0	5	0	5	16

Grand Total	0	3	5	0	8	0	0	1	4	5	0	0	26	0	26	0	0	11	1	12
Apprch \%	0	37.5	62.5	0		0	0	20	80		0	0	100	0		0	0	91.7	8.3	
Total $\%$	0	5.9	9.8	0	15.7	0	0	2	7.8	9.8	0	0	51	0	51	0	0	21.6	2	23.5

CTS Engineering, Inc
 8095 NW 12 Street, Ste 301 Doral, FL 33126

CLIENT: MDC TPO
JOB NO.:TWO 3
PROJECT:N Miami Avenue and NE 163 Street COUNTY:Miami-Dade

File Name : 2- N Miami Ave \& NE 163rd St
Site Code : 00000000
Start Date : 3/17/2021
Page No : 1

Groups Printed- Peds \& Bikes

	NE 163rd St Eastbound					NE 163rd St Westbound					N Miami Ave Northbound					N Miami Ave Southbound					
Start Time	Peds			Bikes	App. Toal	Peds			Bikes	App. Toal	Peds			Bikes	App. Toal	Peds			Bikes	App. Toal	Int. Total
07:45 AM	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
Total	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1

*** BREAK ***

04:15 PM	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
04:30 PM	1	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	2
04:45 PM	2	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Total	4	0	0	0	4	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1	6
05:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
$\begin{gathered} * * \text { BREAK } \\ 05: 30 \text { PM } \\ * * * \text { RDC^k } \end{gathered}$	** 1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	2
Grand Total	6	0	0	0	6	2	0	0	0	2	2	0	0	0	2	2	0	0	0	2	12
Apprch \%	100	0	0	0		100	0	0	0		100	0	0	0		100	0	0	0		
Total \%	50	0	0	0	50	16.7	0	0	0	16.7	16.7	0	0	0	16.7	16.7	0	0	0	16.7	

APPENDIX D. CRASH SUMMARY

Crash Summary

Crash Number	Collision Diagram Number	Date	Time	Crash Type	Fatal	Injuries	Property Damage	Day / Night	Wet / Dry	Data Source
866995910	1	09/27/2016	1654	Angle	0	0	1	Day	Wet	SSOGis
866991460	2	09/02/2016	0659	Angle	0	1	0	Day	Dry	SSOGis
859784140	3	01/21/2016	0755	Angle	0	0	1	Day	Dry	SSOGis
865258910	4	07/30/2016	1913	Fixed Object/Run-Off Road	0	0	1	Day	Dry	SSOGis
867009500	5	09/13/2016	1650	Angle	0	0	1	Day	Dry	SSOGis
865294820	6	08/21/2016	1000	Angle	0	0	1	Day	Dry	SSOGis
868866790	7	04/28/2017	1535	Angle	0	0	1	Day	Dry	SSOGis
873107440	8	06/16/2017	0901	Angle	0	0	1	Day	Dry	SSOGis
868955000	9	04/09/2017	1640	Angle	0	0	1	Day	Dry	SSOGis
876499060	10	09/18/2018	0823	Angle	1	6	0	Day	Dry	SSOGis
86894927	11	3/17/2017	1339	Angle	0	0	1	Day	Dry	S4
86895628	12	3/20/2017	1825	Angle	0	0	1	Day	Dry	S4
87630295	13	4/15/2018	1300	Angle	0	0	1	Day	Dry	S4
87642273	14	7/5/2018	1752	Rear End	0	0	1	Day	Dry	S4
87657546	15	10/17/2018	1728	Angle	0	1	0	Day	Dry	S4
87656392	16	10/29/2018	825	Angle	0	0	1	Day	Dry	S4
88861988	17	1/29/2019	1502	Head On	0	0	1	Day	Dry	S4
88861893	18	2/3/2019	1201	Angle	0	1	0	Night	Dry	S4
87651069	19	2/3/2019	1335	Head On	0	0	1	Day	Dry	S4
88868796	20	3/16/2019	1908	Angle	0	0	1	Night	Dry	S4
88871241	21	4/6/2019	1540	Angle	0	0	1	Day	Dry	S4
89510500	22	12/13/2019	2046	Angle	0	2	0	Night	Dry	S4
89524493	23	4/15/2020	1216	Angle	0	1	0	Day	Dry	S4
89531533	24	7/2/2020	1758	Angle	0	2	0	Day	Dry	S4
89532619	25	7/10/2020	1718	Angle	0	0	1	Day	Wet	S4
89539649	26	10/10/2020	1325	Angle	0	2	0	Day	Dry	S4
89546402	27	12/10/2020	1437	Angle	0	0	1	Day	Dry	S4

CRASH ANALYSIS - N MIAMI AVENUE \& N 163 STREET

		Analysis Year					Severity					Total	Average	Percent
		2016	2017	2018	2019	2020	Property Damage Only	Possible Injury	NonIncapacitating Injury	Incapacitating Injury	Fatal			
Type of Crash	Rear End	0	0	1	0	0	1	0	0	0	0	1	0.2	3.7\%
	Angle	5	5	4	4	5	15	6	0	1	1	23	4.6	85.2\%
	Left Turn	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Right Turn	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Sideswipe	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Head On	0	0	0	2	0	2	0	0	0	0	2	0.4	7.4\%
	Fixed Object/Run-Off Road	1	0	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	Pedestriam	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Bicycle	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Other	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Total Crashes	6	5	5	6	5	19	6	0	1	1	27	5.4	100.0\%
Crash Severity	Property Damage Only	5	5	3	4	2						19	3.8	70.4\%
	Possible Injury	1	0	1	1	3						6	1.2	22.2\%
	Non-Incapacitating Injury	0	0	0	0	0						0	0.0	0.0\%
	Incapacitating Injury	0	0	0	1	0						1	0.2	3.7\%
	Fatal	0	0	1	0	0						1	0.2	3.7\%
Light Conditions	Daylight	6	5	5	3	5	18	5	0	0	1	24	4.8	88.9\%
	Dusk	0	0	0	1	0	1	0	0	0	0	1	0.2	3.7\%
	Dawn	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Dark - Liseswhesed	0	0	0	2	0	0	1	0	1	0	2	0.4	7"4\%"'s
	Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Dark - Lighting Unknown	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Other/Unknown	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
Road Surface Condition	Dry	5	5	5	6	4	17	6	0	1	1	25	5.0	92.6\%
	Wet	1	0	0	0	1	2	0	0	0	0	2	0.4	7.4\%
	Other	0	0	0	0	0	0	0	0	0	0	0	0.0	0"0\%"'s
Month	January	1	0	0	1	0	2	0	0	0	0	2	0.4	7.4\%
	February	0	0	0	2	0	1	0	0	1	0	2	0.4	7.4\%
	March	0	2	0	1	0	3	0	0	0	0	3	0.6	11.1\%
	April	0	2	1	1	1	4	1	0	0	0	5	1.0	18.5\%
	May	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	June	0	1	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	July	1	0	1	0	2	3	1	0	0	0	4	0.8	14.8\%
	August	1	0	0	0	0	1	0	0	0	0	1	0.2	3"7.7\%
	September	3	0	1	0	0	2	1	0	0	1	4	0.8	14.8\%
	October	0	0	2	0	1	1	2	0	0	0	3	0.6	111.1\%
	November	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	December	0	0	0	1	1	1	1	0	0	0	2	0.4	7.4\%
Day of Week	Monday	0	1	1	0	0	2	0	0	0	0	2	0.4	7.4\%
	Tuesday	2	0	1	1	0	3	0	0	0	1	4	0.8	14.8\%
	Wednesday	0	0	1	0	1	0	2	0	0	0	2	0.4	7.4\%
	Thursday	1	0	1	0	2	3	1	0	0	0	4	0.8	14.8\%
	Friday	1	3	0	1	1	4	2	0	0	0	6	1.2	22.2\%
	Saturday	1	0	0	2	1	3	1	0	0	0	4	0.8	14.8\%
	Sunday	1	1	1	2	0	4	0	0	1	0	5	1.0	18.5\%

CRASH ANALYSIS - N MIAMI AVENUE \& N 163 STREET

		Analysis Year					Severity					Total	Average	Percent
		2016	2017	2018	2019	2020	Property Damage Only	$\begin{aligned} & \text { Possible } \\ & \text { Injury } \end{aligned}$	NonIncapacitating Injury	Incapacitating Injury	Fatal			
Hour of Day	0:00	0	0	0	1	0	0	0	0	1	0	1	0.2	3.7\%
	1:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	2:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	3:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	4:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0"0.0\%"'s
	5:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0"0\%"'s
	6:00	1	0	0	0	0	0	1	0	0	0	1	0.2	3.7\%
	7:00	1	0	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	8:00	0	0	2	0	0	1	0	0	0	1	2	0.4	7.4\%
	9:00	0	1	0	0	0	1	0	0	0	0	1	0.2	3.2"**
	10:00	1	0	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	11:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	12"**"00	0	0	0	0	1	0	1	0	0	0	1	0.2	3.7\%"'s
	13:00	0	1	1	1	1	3	1	0	0	0	4	0.8	14.8\%
	14:00	0	0	0	0	1	1	0	0	0	0	1	0.2	3.7\%
	15:00	0	1	0	2	0	3	0	0	0	0	3	0.6	11.1\%
	1"**:00	2	1	0	0	0	3	0	0	0	0	3	0.6	11.1\%"'s
	17:00	0	0	2	0	2	2	2	0	0	0	4	0.8	14.8\%
	18:00	0	1	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	19:00	1	0	0	1	0	2	0	0	0	0	2	0.4	7.4\%
	2"**":00	0	0	0	1	0	0	1	0	0	0	1	0.2	3.4.7\%
	21:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	22:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	23:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
Time Period	12AM-6AM	0	0	0	1	0	0	0	0	1	0	1	0.2	3.7\%
	$6 \mathrm{AM}-12 \mathrm{PM}$	3	1	2	0	0	4	1	0	0	1	6	1.2	222.2\%
	12PMM-6PM	2	3	3	3	5	12	4	0	0	0	16	3.2	59.3\%
	6PM-12AM	1	1	0	2	0	3	1	0	0	0	4	0.8	14.8\%
Alcohol \& Drugs	None	6	5	5	6	5	19	6	0	1	1	27	5.4	100.0\%
	Alcohol Involved	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Drugs Involved	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Alcohol and Drugs	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Undetermined	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
Age of Driver 1 (Typically Driver at Fault)	19 and Under	0	0	0	0	0						0	0.0	0.0\%
	20-24	0	0	0	0	0						0	0.0	0.0")"'s
	25-29	0	0	0	0	0						0	0.0	0.0\%
	30-34	0	0	0	0	0						0	0.0	0.0\%
	- $35-39$	"	0	"	"	0						0	0.0	0.0\%"'s
	40-44	0	0	0	0	0						0	0.0	0.0\%
	45-49	0	0	0	0	0						0	0.0	0.0\%
	50-54	0	0	0	0	0						0	0.0	0.0\%
	55-59		${ }^{0}$	-		"0'0]						"'0]	${ }^{0} 0$	0.0\%
	60-64	0	0	0	0	0						0	0.0	0.0'0\%
	65-69	0	0	0	0	0						0	0.0	0.0\%
	70-74	0	0	0	0	0						0	0.0	0.0\%
	7"**-79"	"	0	0	"	"						"	0.0	0.0\%"
	80-84	0	0	0	0	0						0	0.0	0.0"'0\%
	85 and Over	0	0	0	0	0						0	0.0	0.0\%
	'Unknown	" ${ }^{\text {"' }}$	0	0	0	0						0	0.0	0.0\%

APPENDIX E. SIGNAL WARRANT ANALYSIS

TRAFFIC SIGNAL WARRANT SUMMARY

Introduction

- The Signal Warrant Analysis Spreadsheets are a tool for assisting traffic engineers when evaluating the need for a traffic signal installation
- The filled spreadsheets can be used as part of the supporting documents for the signal warrant evaluation

Note: This templates are a useful resource, but it remains necessary to apply engineering judgment and to consider specific environmental, traffic, geometric, and operational conditions

Instructions

Fill in "Orange" areas only
Automated cells based on in Input Data in "orange" cells

General Information
Fill in below the general information including:
District, County (drop-down menu)
City, Engineer, Date
Major and Minor Street with corresponding number of lanes and speed limits
Enter Eight Hour Volumes Any 8 hours of an average day. Major-street and minor-street volumes shall be for the same 8 hours; however, the 8 hours satisfied in Condition A shall not be required to be the same 8 hours satisfied in Condition B for $\mathbf{8 0 \%}$ columns only. On the minor street, the higher volume shall not be required to be on the same approach during each of the 8 hours.

Enter Four Hour Volumes Any 4 hours of an average day. Vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor-street approach (one direction only, not required to be on the same approach during each of the 4 hours)

Enter Pedestrian Volumes (4-r Pedestrians per hour crossing the major street (total of all crossings)
Enter Peak Hour Volumes
Vehicular: Any four consecutive 15-minute periods of an average day
Pedestrian: Any four consecutive 15-minute periods of an average day representing the vehicles per hour on the major street (total of both approaches) and the corresponding pedestrians per hour crossing the major street (total of all crossings)

Input Data							
City:	Miami			Major Approach Speed Minor Approach Speed:			traffic engineering
County:	87 - Miami Dade	Engineer:					October 2020
District:	Six	Date: Major Street \# Lanes: Minor Street \# Lanes:	March 31, 2021				
Major Street Minor Street	N Miami Ave		2		30		
	NW 163 St		2		30		
	Eight Hour Volumes (Condition A)			For Warrant 7	Eight Hour Volumes (Condition B)		
	Hours	Major Street (total of both approaches)	Minor Street (one direction only)	Ped Crossings on Major Street	Hours	Major Street (total of both approaches)	Minor Street (one direction only)
	7:30 AM	415	52		7:30 AM	415	52
	8:30 AM	416	44		8:30 AM	416	44
	1:00 PM	381	67		1:00 PM	381	67
	2:00 PM	478	117		2:00 PM	478	117
	3:00 PM	496	130		3:00 PM	496	130
	4:00 PM	532	150		4:00 PM	532	150
	5:00 PM	556	152		5:00 PM	556	152
	6:00 PM	519	74		6:00 PM	519	74
	Highest Four Hour Vehicular Volumes				Highest Four Hour Pedestrian Volumes		
	Hours	Major Street (total of both approaches)	Minor Street (one direction only)		Hours	Major Street (total of both approaches)	Pedestrian Crossings on Major Street
	2:00 PM	478	117				
	3:00 PM	496	130				
	4:00 PM	532	150				
	5:00 PM	556	152				
	Vehicular Peak Hour Volumes						
	Peak Hour	Major Street (total of both approaches)	Minor Street (one direction only)	Total Entering Volume			
	5:00 PM	556	152	750			
	Pedestrian Peak Hour Volumes						
	Peak Hour	Major Street (total of both approaches)	Pedestrian Crossing Volumes on Major Street				

Condition B - Interruption of Continuous Traffic

Condition B is intended for application where Condition A is not satisfied and the traffic volume on a major street is so heavy that traffic on the minor intersecting street suffers excessive delay or conflict in entering or crossing the major street.

Applicable:	\square Yes	\square No
100\% Satisfied:	\square Yes	\square No
80\% Satisfied:	\square Yes	\square No
70\% Satisfied:	\square Yes	\square No

Number of traffic on	for moving approach	Vehicles per hour on majorstreet (total of both approaches)			Vehicles per hour on minorstreet (one direction only)		
Major	Minor	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$	100\% ${ }^{\text {a }}$	80\% ${ }^{\text {b }}$	70\% ${ }^{\text {c }}$
1	1	750	600	525	75	60	53
2 or more	1	900	720	630	75	60	53
2 or more	2 or more	900	720	630	100	80	70
1	2 or more	750	600	525	100	80	70

${ }^{\text {a }}$ Basic Minimum hourly volume
${ }^{\mathrm{b}}$ Used for combination of Conditions A and B after adequate trial of other remedial measures
${ }^{\text {c }}$ May be used when the major-street speed exceeds 40 mph or in an isolated community with a population of less than 10,000

Record 8 highest hours and the corresponding major-street and minor-street volumes in the Instructions Sheet.

Eight Highest Hours								
Street	$\begin{aligned} & \underset{K}{\Sigma} \\ & \stackrel{O}{0} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \sum \\ & \underset{<}{\Sigma} \\ & \underset{\omega}{\infty} \end{aligned}$		$\begin{aligned} & \underset{0}{\Sigma} \\ & \stackrel{\text { O}}{\dot{N}} \end{aligned}$		$\begin{aligned} & \Sigma \\ & \stackrel{\Sigma}{n} \\ & \stackrel{\rightharpoonup}{\dot{f}} \end{aligned}$	$\begin{aligned} & \Sigma \\ & \vdots \\ & 0 \\ & \text { oi } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \Sigma \\ & \vdots \\ & \hline 0 \\ & \dot{0} \end{aligned}$
Major	415	416	381	478	496	532	556	519
Minor	52	44	67	117	130	150	152	74

Existing Volumes

TRAFFIC SIGNAL WARRANT SUMMARY

City:	Miami
County:	87 - Miami Dade
District:	Six
Major Street:	N Miami Ave
Minor Street:	NW 163 St

Engineer:	
Date:	
Lanes:	$\mathbf{2} \quad$ March 31, 2021
Lanes:	$\mathbf{2} \quad$ Minor Approach Speed: $\quad \mathbf{3 0}$

MUTCD Electronic Reference to Chapter 4: lttp://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pd

Volume Level Criteria

1. Is the posted speed or 85th-percentile of major street $>35 \mathrm{mph}$?

\square Yes $\quad \square \mathrm{No}$	
$\square \mathrm{Yes}$	$\square \mathrm{No}$
$\square 70 \%$	$\square 100 \%$

Option

Pedestrian volume crossing the major street may be reduced as much as 50% if the 15thpercentile crossing speed of pedestrians is less than $3.5 \mathrm{ft} / \mathrm{sec}$. A walking speed study was conducted which reported a pedestrian speed less than $3.5 \mathrm{ft} / \mathrm{sec}$ for the 15th percentile.

WARRANT 4 - PEDESTRIAN VOLUME

For each of any 4 hours of an average day, the plotted points lie above the appropriate line, then the warrant is satisfied.

Applicable:	\square Yes \square No
Satisfied:	\square Yes \square No

Plot four volume combinations on the applicable figure below.
Figure 4C-5. Criteria for "100\%" Volume Level

Four Highest Hours	Volumes	
	Major Street	Pedestrian Total

* Note: 107 pph applies as the lower threshold volume for 100% volume level

Figure 4C-6 Criteria for "70\%" Volume Level

WARRANT 4 - PEDESTRIAN VOLUME

For 1 hour (any four consecutive 15-minute periods) of an average day, the plotted point falls above the appropriate line, then the warrant is satisfied.

Applicable:YesNo

Satisfied:YesNo

Plot one volume combination on the applicable figure below.

100% Volume Level		
	Volumes	
	Major Street	Pedestrian Total

Figure 4C-7. Criteria for "100\%" Volume Level - Peak Hour

* Note: 133 pph applies as the lower threshold volume

Figure 4C-8 Criteria for "70\%" Volume Level - Peak Hour

* Note: 93 pph applies as the lower threshold volume

TRAFFIC SIGNAL WARRANT SUMMARY

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 5 - SCHOOL CROSSING

Record hours where criteria are fulfilled and the corresponding volume or gap frequency in the boxes provided. The warrant is satisfied if all three of the criteria are fulfilled.

Applicable:Yes
Satisfied:\square YesNo

TRAFFIC SIGNAL WARRANT SUMMARY

City:	Miami
County:	87 - Miami Dade
District:	Six
Major Street:	N Miami Ave
Minor Street:	NW 163 St

Engineer: \qquad

Lanes:	$\mathbf{2}$
Lanes:	

Major Approach Speed: $\quad \mathbf{3 0}$
Minor Approach Speed:
$\mathbf{3 0}$

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 6 - COORDINATED SIGNAL SYSTEM

Indicate if the criteria are fulfilled in the boxes provided. The warrant is satisfied if either criterion is fulfilled. This warrant should not be applied when the resulting signal spacing would be less than 300 m (1,000 ft.).

Applicable:	\square Yes $\quad \square$ No
Satisfied:	\square Yes $\quad \square$ No

	Criteria	Fulfilled?
	Yes	No
1. On a one-way street or a street that has traffic predominately in one direction, the adjacent signals are so far apart that they do not provide the necessary degree of vehicle platooning.		
On a two-way street, adjacent signals do not provide the necessary degree of platooning, and the proposed and adjacent signals will collectively provide a progressive operation.		

TRAFFIC SIGNAL WARRANT SUMMARY

City:	Miami
County:	87 - Miami Dade
District:	Six
Major Street:	N Miami Ave
Minor Street:	NW 163 St

Engineer:	
Date:	March 31, 2021
Lanes:	$\mathbf{2} \quad$ Major Approach Speed:
Lanes: $\mathbf{3 0}$	
$\mathbf{2} \quad$ Minor Approach Speed:	$\mathbf{3 0}$

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 7 - CRASH EXPERIENCE

Record hours where criteria are fulfilled, the corresponding volume, and other information in the boxes provided. The warrant is satisfied if all three of the criteria are fulfilled.

Criteria					Fulfilled?	
					Yes	No
Adequate trial of other remedial measure has failed 1. to reduce crash frequency.	Measure tried:					x
Five or more reported crashes, of types susceptible 2. to correction by signal, have occurred within a 12month period.	Observed Crash Types:	Angle	Number of cras per 12 months:	s 5	x	
	One of the following volume warrants is met: \quad Met?					No
Warrant 1, Condition A (80% satisfied), or				No		
Warrant 1, Condition B (80\% satisfied), or				No		
Warrant 4, Pedestrian Volume satisfied at 80\% of volume requirements for any 8 hours of an average day.	Hour	Major Street Volume	Ped Crossings Volume			
	7:30 AM	415				
	8:30 AM	416				
	1:00 PM	381				
	2:00 PM	478				
	3:00 PM	496				
	4:00 PM	532				
	5:00 PM	556				
	6:00 PM	519				

Figure 4C-5. Criteria for "100\%" Volume Level

[^0]TRAFFIC SIGNAL WARRANT SUMMARY

City:	Miami
County:	87 - Miami Dade
District:	Six
Major Street:	N Miami Ave
Minor Street:	NW 163 St

Engineer: \quad Date: \quad March 31, 2021

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

WARRANT 8 - ROADWAY NETWORK

Record hours where criteria are fulfilled, and the corresponding volume or other information in the boxes provided. The warrant is satisfied if at least one of the criteria is fulfilled and if all intersecting routes have one or more of the Major Route

Lanes:	$\mathbf{2}$	Major Approach Speed: $\quad \mathbf{3 0}$
Lanes: $\mathbf{2} \quad$ Minor Approach Speed:		

Applicable:Yes $\quad \mathrm{N}$ characteristics listed.

Characteristics of Major Routes		Met?		Fulfilled?	
		Yes	No	Yes	No
Part of the street or highway system that serves as the principal roadway 1. network for through traffic flow.	Major Street:				
	Minor Street:				
2. Rural or suburban highway outside of, entering, or traversing a city.	Major Street:				
	Minor Street:				
3. Appears as a major route on an official plan.	Major Street:				
	Minor Street:				

City:	Miami
County:	87 - Miami Dade
District:	Six
Major Street:	N Miami Ave
Minor Street:	NW 163 St

Engineer: Date:		
	March 31, 2021	
Lanes: $\mathbf{2}$	Major Approach Speed:	30
Lanes: $\mathbf{2}$	Minor Approach Speed:	30

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

Approach Lane Criteria

1. How many approach lanes are there at the track crossing?
\square
12 or moreFig 4C-10

If there is 1 lane, use Figure $4 \mathrm{C}-9$ and if there are 2 or more, use Figure $4 \mathrm{C}-10$.

WARRANT 9 - INTERSECTION NEAR A GRADE CROSSING

This signal warrant should be applied only after adequate consideration has been given to other alternatives or after a trial of an alternative has failed to alleviate the safety concerns associated with the grade crossing.

Indicate if both criteria are fulfilled in the boxes provided. The warrant is satisfied if both criteria are met.

Applicable:	\square Yes	\square No
Satisfied:	\square Yes	\square No

Criteria	Fulfilled?	
	Yes	No
1. A grade crossing exists on an approach controlled by a STOP or YIELD sign and the center of the track nearest to the intersection is within 140 feet of the stop line or yield line on the approach; and	\square	\square
2. During the highest traffic volume hour during which the rail uses the crossing, the plotted point falls above the applicable curve for the existing combination of approach lanes over the track and the distance D (clear storage distance).	\square	\square

Use the following tables (4C-2, 4C-3, and 4C-4 to appropriately adjust the minor-street approach volume).

Inputs

Occurrences of Rail traffic per day
\% of High Occupancy Buses on Approach Lane at Track Crossing Enter D (feet)
\% of Tractor-Trailer Trucks on Approach Lane at Track Crossing
Table 4C-2. Adjustment Factor for Daily Frequency of
Rail Traffic

Rail Traffic per Day	Adjustment Factor
1	0.67
2	0.91
3 to 5	1.00
6 to 8	1.18
9 to 11	1.25
12 or more	1.33

Adjustment Factors from Tables

Table 4C-3. Adjustment Factor for Percentage of HighOccupancy Buses

\% of High-Occupancy Buses* on Minor Street Approach	Adjustment Factor
0%	1.00
2%	1.09
4%	1.19
6\% or more	1.32

Table 4C-4. Adjustment Factor for Percentage of Tractor-Trailer Trucks

\% of Tractor-Trailer Trucks on Minor- Street Approach	Adjustment Factor	
	D less than 70 feet	D of 70 feet or more
0% to 2.5%	0.50	0.50
2.6% to 7.5%	0.75	0.75
7.6% to 12.5%	1.00	1.00
12.6% to 17.5%	2.30	1.15
17.6% to 22.5%	2.70	1.35
22.6% to 27.5%	3.28	1.64
More than 27.5%	4.18	2.09

TRAFFIC SIGNAL WARRANT SUMMARY

MUTCD Electronic Reference to Chapter 4: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf

CONCLUSIONS

Remarks: \qquad

WARRANTS SATISFIED:
Warrant 1
Warrant 2
Warrant 3
Warrant 4
Warrant 5
Warrant 6
Warrant 7
Warrant 8
Warrant 9

\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met
\square Not Applicable	\square Met	\square Not Met

APPENDIX F. ICE STAGE 1

Existing Conditions

Intersection: N Miami Avenue @ N 163 Street Location: Miami-Dade County - D6

Proposed Concept Design

Crash Summary

CRASH ANALYSIS - N MIAMI AVENUE \& N 163 STREET

		Analysis Year					Severity					Total	Average	Percent
		2016	2017	2018	2019	2020	Property Damage Only	Possible Injury	NonIncapacitating Injury	Incapacitating Injury	Fatal			
Type of Crash	Rear End	0	0	1	0	0	1	0	0	0	0	1	0.2	3.7\%
	Angle	5	5	4	4	5	15	6	0	1	1	23	4.6	85.2\%
	Left Turn	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Right Turn	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Sideswipe	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Head On	0	0	0	2	0	2	0	0	0	0	2	0.4	7.4\%
	Fixed Object/Run-Off Road	1	0	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	Pedestriam	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Bicycle	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Other	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Total Crashes	6	5	5	6	5	19	6	0	1	1	27	5.4	100.0\%
Crash Severity	Property Damage Only	5	5	3	4	2						19	3.8	70.4\%
	Possible Injury	1	0	1	1	3						6	1.2	22.2\%
	Non-Incapacitating Injury	0	0	0	0	0						0	0.0	0.0\%
	Incapacitating Injury	0	0	0	1	0						1	0.2	3.7\%
	Fatal	0	0	1	0	0						1	0.2	3.7\%
Light Conditions	Daylight	6	5	5	3	5	18	5	0	0	1	24	4.8	88.9\%
	Dusk	0	0	0	1	0	1	0	0	0	0	1	0.2	3.7\%
	Dawn	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Dark - Liseswhesed	0	0	0	2	0	0	1	0	1	0	2	0.4	7"4\%"'s
	Dark - Not Lighted	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Dark - Lighting Unknown	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Other/Unknown	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
Road Surface Condition	Dry	5	5	5	6	4	17	6	0	1	1	25	5.0	92.6\%
	Wet	1	0	0	0	1	2	0	0	0	0	2	0.4	7.4\%
	Other	0	0	0	0	0	0	0	0	0	0	0	0.0	0"0\%"'s
Month	January	1	0	0	1	0	2	0	0	0	0	2	0.4	7.4\%
	February	0	0	0	2	0	1	0	0	1	0	2	0.4	7.4\%
	March	0	2	0	1	0	3	0	0	0	0	3	0.6	11.1\%
	April	0	2	1	1	1	4	1	0	0	0	5	1.0	18.5\%
	May	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	June	0	1	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	July	1	0	1	0	2	3	1	0	0	0	4	0.8	14.8\%
	August	1	0	0	0	0	1	0	0	0	0	1	0.2	3"7.7\%
	September	3	0	1	0	0	2	1	0	0	1	4	0.8	14.8\%
	October	0	0	2	0	1	1	2	0	0	0	3	0.6	111.1\%
	November	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	December	0	0	0	1	1	1	1	0	0	0	2	0.4	7.4\%
Day of Week	Monday	0	1	1	0	0	2	0	0	0	0	2	0.4	7.4\%
	Tuesday	2	0	1	1	0	3	0	0	0	1	4	0.8	14.8\%
	Wednesday	0	0	1	0	1	0	2	0	0	0	2	0.4	7.4\%
	Thursday	1	0	1	0	2	3	1	0	0	0	4	0.8	14.8\%
	Friday	1	3	0	1	1	4	2	0	0	0	6	1.2	22.2\%
	Saturday	1	0	0	2	1	3	1	0	0	0	4	0.8	14.8\%
	Sunday	1	1	1	2	0	4	0	0	1	0	5	1.0	18.5\%

CRASH ANALYSIS - N MIAMI AVENUE \& N 163 STREET

		Analysis Year					Severity					Total	Average	Percent
		2016	2017	2018	2019	2020	Property Damage Only	$\begin{aligned} & \text { Possible } \\ & \text { Injury } \end{aligned}$	NonIncapacitating Injury	Incapacitating Injury	Fatal			
Hour of Day	0:00	0	0	0	1	0	0	0	0	1	0	1	0.2	3.7\%
	1:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	2:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	3:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	4:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0"0.0\%"'s
	5:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0"0\%"'s
	6:00	1	0	0	0	0	0	1	0	0	0	1	0.2	3.7\%
	7:00	1	0	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	8:00	0	0	2	0	0	1	0	0	0	1	2	0.4	7.4\%
	9:00	0	1	0	0	0	1	0	0	0	0	1	0.2	3.2"**
	10:00	1	0	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	11:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	12"**"00	0	0	0	0	1	0	1	0	0	0	1	0.2	3.7\%"'s
	13:00	0	1	1	1	1	3	1	0	0	0	4	0.8	14.8\%
	14:00	0	0	0	0	1	1	0	0	0	0	1	0.2	3.7\%
	15:00	0	1	0	2	0	3	0	0	0	0	3	0.6	11.1\%
	1"**:00	2	1	0	0	0	3	0	0	0	0	3	0.6	11.1\%"'s
	17:00	0	0	2	0	2	2	2	0	0	0	4	0.8	14.8\%
	18:00	0	1	0	0	0	1	0	0	0	0	1	0.2	3.7\%
	19:00	1	0	0	1	0	2	0	0	0	0	2	0.4	7.4\%
	2"**":00	0	0	0	1	0	0	1	0	0	0	1	0.2	3.4.7\%
	21:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	22:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	23:00	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
Time Period	12AM-6AM	0	0	0	1	0	0	0	0	1	0	1	0.2	3.7\%
	$6 \mathrm{AM}-12 \mathrm{PM}$	3	1	2	0	0	4	1	0	0	1	6	1.2	222.2\%
	12PMM-6PM	2	3	3	3	5	12	4	0	0	0	16	3.2	59.3\%
	6PM-12AM	1	1	0	2	0	3	1	0	0	0	4	0.8	14.8\%
Alcohol \& Drugs	None	6	5	5	6	5	19	6	0	1	1	27	5.4	100.0\%
	Alcohol Involved	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Drugs Involved	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Alcohol and Drugs	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
	Undetermined	0	0	0	0	0	0	0	0	0	0	0	0.0	0.0\%
Age of Driver 1 (Typically Driver at Fault)	19 and Under	0	0	0	0	0						0	0.0	0.0\%
	20-24	0	0	0	0	0						0	0.0	0.0")"'s
	25-29	0	0	0	0	0						0	0.0	0.0\%
	30-34	0	0	0	0	0						0	0.0	0.0\%
	- $35-39$	"	0	"	"	0						0	0.0	0.0\%"'s
	40-44	0	0	0	0	0						0	0.0	0.0\%
	45-49	0	0	0	0	0						0	0.0	0.0\%
	50-54	0	0	0	0	0						0	0.0	0.0\%
	55-59		${ }^{0}$	-		"0'0]						"'0]	${ }^{0} 0$	0.0\%
	60-64	0	0	0	0	0						0	0.0	0.0'0\%
	65-69	0	0	0	0	0						0	0.0	0.0\%
	70-74	0	0	0	0	0						0	0.0	0.0\%
	7"**-79"	"	0	0	"	"						"	0.0	0.0\%"
	80-84	0	0	0	0	0						0	0.0	0.0"'0\%
	85 and Over	0	0	0	0	0						0	0.0	0.0\%
	'Unknown	" ${ }^{\text {"' }}$	0	0	0	0						0	0.0	0.0\%

CAP-X - 2021 AM Peak

Project Name:	MD TPO Intersection Safety Analysis
Project Number:	22756.32
Location:	N Miami Ave \& N 163 St
Date:	2021 AM
Number of Intersection Legs:	4
Major Street Direction	North-South

Traffic Volume Demand

	Volume (Veh/hr)				Percent (\%)	
	U-Turn	Left	Thru	Right	Heavy Vehicles	Volume Growth
Eastbound	0	8	54	0	1.79\%	0.00\%
Westbound	0	13	24	15	0.00\%	0.00\%
Southbound	0	9	146	6	2.45\%	0.00\%
Northbound	0	4	226	8	2.95\%	0.00\%
Adjustment Factor	0.80	0.95		0.85		
Suggested	0.80	0.95		0.85	,	
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zone		C4-General Urban Residential				
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3 -phase signal		Suggested = 1750		1750
		4-phase signal		Suggested $=1700$		1700

Capacity Analysis for Planning of Junctions
Summary Report - Page 2 of 2

TYPE OF INTERSECTION	Overall v/c Ratio	V/C Ranking	Multimodal Score	Pedestrian Accommodation s	Bicycle Accommodation s	Transit Accommodatio ns
Traffic Signal	0.10	1	2.4	Poor	Poor	Fair
Two-Way Stop Control N-S	0.14	2	1.9	Poor	Poor	Fair
1×1	0.19	3	3.3	Fair	Fair	Fair
75 ICD	0.25	4	3.3	Fair	Fair	Fair
50 ICD	0.26	5	3.3	Fair	Fair	Fair
All-Way Stop Control	0.44	6	3.3	Fair	Fair	Fair
--	--	--	--	--	--	--
--	--	--	--	--	--	--
--	--	--	--	--	--	--
--	--	--	--	--	--	--

CAP-X - 2021 PM Peak

Project Name:	MD TPO Intersection Safety Analysis
Project Number:	22756.32
Location:	N Miami Ave \& N 163 St
Date:	2021 PM
Number of Intersection Legs:	4
Major Street Direction	North-South

Traffic Volume Demand

	Volume (Veh/hr)				Percent (\%)	
	U-Turn	Left	Thru	Right	Heavy Vehicles	Volume Growth
Eastbound	0	24	40	5	2.92\%	0.00\%
Westbound	0	16	37	48	0.99\%	0.00\%
Southbound	0	13	171	2	2.67\%	0.00\%
Northbound	0	9	402	7	1.93\%	0.00\%
Adjustment Factor	0.80	0.95		0.85		
Suggested	0.80	0.95		0.85	,	
Truck to PCE Factor				Suggest	2.00	2.00
FDOT Context Zone		C4-General Urban Residential				
Critical Lane Volume Threshold		2-phase signal		Suggested = 1800		1800
		3-phase signal		Suggested = 1750		1750
		4-phase signal		Suggested $=1700$		1700

Capacity Analysis for Planning of Junctions
Summary Report - Page 2 of 2

TYPE OF INTERSECTION	Overall v/c Ratio	V/C Ranking	Multimodal Score	Pedestrian Accommodation s	Bicycle Accommodation s	Transit Accommodatio ns
Traffic Signal	0.17	1	2.4	Poor	Poor	Fair
Two-Way Stop Control N-S	0.25	2	1.9	Poor	Poor	Fair
1×1	0.34	3	3.3	Fair	Fair	Fair
75 ICD	0.45	4	3.3	Fair	Fair	Fair
50 ICD	0.45	5	3.3	Fair	Fair	Fair
All-Way Stop Control	0.66	6	3.3	Fair	Fair	Fair
--	--	--	--	--	--	--
--	--	--	--	--	--	--
--	--	--	--	--	--	--
--	--	--	--	--	--	--

SPICE - Stage 1

ICE FORM - Stage 1

Stage 1: Screening

To fulfill the requirements of Stage 1 (Screening) of FDOT's ICE procedures, complete the following form and append all supporting documentation. Completed forms can be submitted to the District Traffic Operations Engineer (DTOE) and District Design Engineer (DDE) for the project's approval.

Project Name	Miami-Dade TPO Intersection Safety Analysis			FDOT Project \#			
Submitted By	Benazir Portal		Agency/Company	Kittelson \& Associates, Inc.		Date	4/15/2021
Email	bportal@kittelson.com		FDOT District	District 6	County	Miami-Dade	
Project Locality (City/Town/Village)		Miami, FL		Project Type	Safety Improvement Project		
	Funding Source	Federal	FDOT Context Classification		C4 - Urban General		
Project Purpose the catalyst	(What is ject and why is it ing undertaken?)	The Purpose \& Need (P\&N) for the project is to improve safety due to a pattern of angle and left turn crashes at the intersection of N Miami Avenue \& N 163 Street. One angle crash resulted in a fatality and all injury related crashes were angle crashes during the study period. The study is to evaluate the intersection and provide justification to apply for HSIP Funds. An Intersection Control Evaluation (ICE) was conducted to determine the appropriate control type for the intersection.					
(Describ	Setting Description a surrounding the intersection	The existing intersection control type is two-way stop control with the north/south approaches operating free flow. North Miami Avenue, located in Miami-Dade County, is a north-south roadway that functions as a local connector between N Biscayne River Drive and N 167 Street. N 163 Street is a local roadway that connects NW 2 Avenue to NE 6 Avenue. The intersection is surrounded by residential properties.					
(Describe the pe activity in th activity based on	ultimodal Context cycle, and transit and the potential for ing land uses and opment patterns)	There was little pedestrian or bicycle activity observed in this area. There are sidewalks present on the east side of the north leg and the north side of the east leg. N Miami Avenue is marked with sharrows in the northbound and southbound directions. There are no marked crosswalks at the intersection. Miami Dade Transit, Route 2, provides service along N Miami Avenue. Under the proposed mini-roundabout condition bicyclists will travel through the intersection on the roadway with vehicular traffic. The existing sharrow pavement markings are anticipated to remain.					

Minor Street Information								
	Route \#:	Route Name(s)	N 163 St			Milepost (if app.)		
Existing Control Type ${ }^{\text {a }}$ Two-way Stop-Control			Existing AADT		Design Year AADT			2,000
Design Vehicle	34' Fire Pumper Tanker		Control Vehicle	34' Fire Pumper Tanker				
Primary Functional Classification			Urban Local		Design Speed (mph)			30
Secondary Functional Classification (if app.)					Target Speed (mph) [if app.]			
	Direction	Eastbound	Number of Lanes		Study Period \#1 Traffic Volumes		Study Period \#2 Trafic Volumes	
	Sidewalks along:	Neither side of the approach	Left-Turn	0				
	Crosswalk on Approach?	No	Left-Through	0	Weekday AM Peak		Weekday PM Peak	
	On-Street Bike Faciilities?	No	Through	0	Left	8	Left	24
	Multi-Use Path?	No	Left-Through-Right	1	Through	54	Through	40
	Scheduled Bus Service?	No	Through-Right	0	Right	0	Right	5
	Bus Stop on Approach?	No	Right-Turn	0	Daily Truck \%		2.4\%	
	Direction	Westbound	Number of Lanes		Study Period \#1 Traffic Volumes		Study Period \#2 Traffic Volumes	
	Sidewalks along:	One side of the approach	Left-Turn	0				
	Crosswalk on Approach?	No	Left-Through	0	Weekday AM Peak		Weekday PM Peak	
	On-Street Bike Facilities?	No	Through	0	Left	13	Left	16
	Multi-Use Path?	No	Left-Through-Right	1	Through	24	Through	37
	Scheduled Bus Service?	No	Through-Right	0	Right	15	Right	48
	Bus Stop on Approach?	No	Right-Turn	0	Daily Truck \%		0.7\%	
	Direction		Number of Lanes		Study Period \#1 Traffic Volumes		Study Period \#2 Traffic Volumes	
	Sidewalks along:		Left-Turn					
	Crosswalk on Approach?		Left-Through		Weekday AM Peak		Weekday PM Peak	
	On-Street Bike Facililies?		Through		Left		Left	
	Multi-Use Path?		Left-Through-Right		Through		Through	
	Scheduled Bus Service?		Through-Right		Right		Right	
	Bus Stop on Approach?		Right-Turn		Daily Truck \%			

Crash History (Existing Intersections Only)

Append the most recent five-years of crash data for the intersection from the CAR System. If the crash data evidences any issues relating to safety performance, discuss briefly here:
The most recent three years of verified SSOGIS crash data on record (2016-2018) was collected for the study intersection. In addition, the most recent five years of Signal Four Analytics ($\$ 4$) crash data (2016-2020) was downloaded and included in the analysis to verify crash patterns remained consistent in the most recent years. Over the five year history, 27 total crashes occurred with one being fatal and seven resulting in at least one injury. Angle crashes were the most common crash type with 23 crashes (85 percent). The fatal crash was an angle crash and the seven injury crashes were angle crashes. Sixteen of the 27 crashes (59 percent) occurred from 12 PM- 6 PM.

FDOT ICE: Stage 1

Control Strategy Evaluation
Provide a brief justification as to why each of the following control strategies should be advanced or not. Justification should consider potential environmental impacts.

Control Strategy	CAP-X Outputs			SPICE Ranking	Strategy to Be Advanced?	Justification
	V/C Ratio		Multimodal Score			
	Weekday AM Peak	Weekday PM Peak				
Two-Way StopControlled	0.14	0.25	1.9	4	No	No-Build alternative is not viable due to existing angle and left turn crash patterns.
All-Way StopControlled	0.44	0.66	3.3	2	No	Lower number of predicted crashes, but higher V/C when compared to the existing TWSC.
Signalized Control	0.10	0.17	2.4	3	No	Higher number of predicted crashes compared to the roundabout alternatives and the intersection does not meet signal warrants.
Roundabout	$\begin{gathered} \hline 0.19 \text { (1x1) } \\ 0.25 \text { (75' ICD) } \\ 0.26 \text { (50' ICD) } \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.34 \text { (1×1) } \\ 0.45 \text { (75' ICD) } \\ 0.45 \text { (50' ICD) } \\ \hline \end{gathered}$	3.3	1	Yes	Higher V/C compared to the existing TWSC, but lower number of predicted crashes than existing TWSC and AWSC. The 75' ICD will be moved forward
Median U-Turn	-	-	-	-	No	The intersection does not meet signal warrants.
RCUT (Signalized)	-	-	-	-	No	The intersection does not meet signal warrants.
RCUT (Unsignalized)	-	-	-	-	No	Significant ROW and environmental impacts in the area surrounding the intersection.
Jughandle				-	No	The intersection does not meet signal warrants.
Displaced LeftTurn	-	-	-	-	No	The intersection does not meet signal warrants.
Continuous Green Tee	-	-	-	-	No	The intersection is a four-leg intersection.
Quadrant Roadway	-	-	-		No	The intersection does not meet signal warrants.
Partial MUT	-	-	-	-	No	The intersection does not meet signal warrants.
Other 2 (Type)	-	-	-	-	No	N/A

FDOT ICE: Stage 1

Resolution		
To be filled out by FDOT District Traffic Operations Engineer and District Design Engineer		
Project Determination	Identified Control Strategy Approved	
Comments		
DOTE Name	Signature	Date
DDE Name	Signature	Date

APPENDIX G. OPERATIONAL ANALYSIS REPORT OUTPUTS

Intersection													
Int Delay, s/veh	3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		\uparrow			\uparrow			\uparrow			¢		
Traffic Vol, veh/h	8	54	0	13	24	15	4	226	8	9	146	6	
Future Vol, veh/h	8	54	0	13	24	15	4	226	8	9	146	6	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None										
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	95	95	95	95	95	95	95	95	95	95	95	95	
Heavy Vehicles, \%	14	0	0	0	0	0	0	3	0	0	3	0	
Mvmt Flow	8	57	0	14	25	16	4	238	8	9	154	6	

Intersection												
Int Delay, s/veh	3.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\$			\&			\$	
Traffic Vol, veh/h	24	40	5	16	37	48	9	402	7	13	171	2
Future Vol, veh/h	24	40	5	16	37	48	9	402	7	13	171	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, \%	4	3	0	0	0	2	0	2	0	0	3	0
Mvmt Flow	25	42	5	17	39	50	9	419	7	14	178	2

MOVEMENT SUMMARY

Site: 101 [N Miami Ave \& N 163 St_Existing AM]

Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} =10 w s \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: N Miami Ave												
3	L2	4	0.0	0.246	5.8	LOS A	1.0	26.4	0.22	0.11	0.22	32.8
8	T1	238	3.0	0.246	5.9	LOS A	1.0	26.4	0.22	0.11	0.22	32.9
18	R2	8	0.0	0.246	5.8	LOS A	1.0	26.4	0.22	0.11	0.22	32.4
Appr		251	2.8	0.246	5.9	LOS A	1.0	26.4	0.22	0.11	0.22	32.9
East: N 163 St												
1	L2	14	0.0	0.063	4.7	LOS A	0.2	5.5	0.35	0.24	0.35	33.0
6	T1	25	0.0	0.063	4.7	LOS A	0.2	5.5	0.35	0.24	0.35	33.2
16	R2	16	0.0	0.063	4.7	LOS A	0.2	5.5	0.35	0.24	0.35	32.6
Appr		55	0.0	0.063	4.7	LOS A	0.2	5.5	0.35	0.24	0.35	33.0
North: N Miami Ave												
7	L2	9	0.0	0.161	4.8	LOS A	0.6	15.8	0.14	0.06	0.14	33.2
4	T1	154	3.0	0.161	4.9	LOS A	0.6	15.8	0.14	0.06	0.14	33.3
14	R2	6	0.0	0.161	4.8	LOS A	0.6	15.8	0.14	0.06	0.14	32.9
Approach		169	2.7	0.161	4.9	LOS A	0.6	15.8	0.14	0.06	0.14	33.3
West: N 163 St												
5	L2	8	14.0	0.072	5.0	LOS A	0.2	6.3	0.29	0.18	0.29	32.8
2	T1	57	0.0	0.072	4.5	LOS A	0.2	6.3	0.29	0.18	0.29	33.5
12	R2	1	0.0	0.072	4.5	LOS A	0.2	6.3	0.29	0.18	0.29	32.9
Appr		66	1.8	0.072	4.5	LOS A	0.2	6.3	0.29	0.18	0.29	33.4
All V	icles	541	2.4	0.246	5.3	LOS A	1.0	26.4	0.22	0.12	0.22	33.1

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KITTELSON AND ASSOCIATES INC | Processed: Monday, May 17, 2021 6:16:11 PM
Project: H:\22\22756 - Miami-Dade TPO GPC\032 - Miami-Dade Intersection Safety AnalysislanalysisISIDRAITraffic Circle Analysis.sip8

MOVEMENT SUMMARY

Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: N Miami Ave												
3	L2	9	0.0	0.426	8.2	LOS A	2.3	57.9	0.29	0.16	0.29	31.7
8	T1	419	2.0	0.426	8.3	LOS A	2.3	57.9	0.29	0.16	0.29	31.8
18	R2	7	0.0	0.426	8.2	LOS A	2.3	57.9	0.29	0.16	0.29	31.4
Appr		435	1.9	0.426	8.3	LOS A	2.3	57.9	0.29	0.16	0.29	31.8
East: N 163 St												
1	L2	17	0.0	0.149	6.7	LOS A	0.5	13.3	0.49	0.45	0.49	32.1
6	T1	39	0.0	0.149	6.7	LOS A	0.5	13.3	0.49	0.45	0.49	32.3
16	R2	50	2.0	0.149	6.8	LOS A	0.5	13.3	0.49	0.45	0.49	31.8
Appr		105	1.0	0.149	6.7	LOS A	0.5	13.3	0.49	0.45	0.49	32.0
North: N Miami Ave												
7	L2	14	0.0	0.188	5.1	LOS A	0.7	18.9	0.19	0.09	0.19	33.0
4	T1	178	3.0	0.188	5.2	LOS A	0.7	18.9	0.19	0.09	0.19	33.1
14	R2	2	0.0	0.188	5.1	LOS A	0.7	18.9	0.19	0.09	0.19	32.7
Approach		194	2.8	0.188	5.2	LOS A	0.7	18.9	0.19	0.09	0.19	33.1
West: N 163 St												
5	L2	25	4.0	0.081	4.9	LOS A	0.3	7.2	0.32	0.21	0.32	32.6
2	T1	42	3.0	0.081	4.8	LOS A	0.3	7.2	0.32	0.21	0.32	32.9
12	R2	5	0.0	0.081	4.7	LOS A	0.3	7.2	0.32	0.21	0.32	32.4
Appr		72	3.1	0.081	4.8	LOS A	0.3	7.2	0.32	0.21	0.32	32.7
All V	icles	806	2.1	0.426	7.0	LOS A	2.3	57.9	0.29	0.18	0.29	32.2

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KITTELSON AND ASSOCIATES INC | Processed: Monday, May 17, 2021 6:16:12 PM
Project: H:\22\22756 - Miami-Dade TPO GPCl032 - Miami-Dade Intersection Safety AnalysislanalysisISIDRAITraffic Circle Analysis.sip8

MOVEMENT SUMMARY

Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} =10 w s \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: N Miami Ave												
3	L2	4	0.0	0.256	5.9	LOS A	1.1	27.7	0.22	0.11	0.22	32.7
8	T1	247	3.0	0.256	6.0	LOS A	1.1	27.7	0.22	0.11	0.22	32.8
18	R2	8	0.0	0.256	5.9	LOS A	1.1	27.7	0.22	0.11	0.22	32.4
Appr		260	2.9	0.256	6.0	LOS A	1.1	27.7	0.22	0.11	0.22	32.8
East: N 163 St												
1	L2	15	0.0	0.067	4.8	LOS A	0.2	5.8	0.36	0.25	0.36	32.9
6	T1	26	0.0	0.067	4.8	LOS A	0.2	5.8	0.36	0.25	0.36	33.1
16	R2	17	0.0	0.067	4.8	LOS A	0.2	5.8	0.36	0.25	0.36	32.6
Appr		58	0.0	0.067	4.8	LOS A	0.2	5.8	0.36	0.25	0.36	32.9
North: N Miami Ave												
7	L2	9	0.0	0.167	4.9	LOS A	0.6	16.5	0.15	0.06	0.15	33.2
4	T1	160	3.0	0.167	5.0	LOS A	0.6	16.5	0.15	0.06	0.15	33.3
14	R2	6	0.0	0.167	4.9	LOS A	0.6	16.5	0.15	0.06	0.15	32.8
Approach		176	2.7	0.167	4.9	LOS A	0.6	16.5	0.15	0.06	0.15	33.3
West: N 163 St												
5	L2	8	14.0	0.074	5.1	LOS A	0.3	6.6	0.30	0.19	0.30	32.7
2	T1	59	0.0	0.074	4.5	LOS A	0.3	6.6	0.30	0.19	0.30	33.5
12	R2	1	0.0	0.074	4.5	LOS A	0.3	6.6	0.30	0.19	0.30	32.9
Appr		68	1.7	0.074	4.6	LOS A	0.3	6.6	0.30	0.19	0.30	33.4
All V	icles	562	2.4	0.256	5.4	LOS A	1.1	27.7	0.22	0.12	0.22	33.0

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KITTELSON AND ASSOCIATES INC | Processed: Monday, May 17, 2021 6:16:11 PM
Project: H:\22\22756 - Miami-Dade TPO GPC\032 - Miami-Dade Intersection Safety AnalysislanalysisISIDRAITraffic Circle Analysis.sip8

MOVEMENT SUMMARY

Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: N Miami Ave												
3	L2	9	0.0	0.445	8.5	LOS A	2.4	61.9	0.31	0.17	0.31	31.5
8	T1	435	2.0	0.445	8.6	LOS A	2.4	61.9	0.31	0.17	0.31	31.7
18	R2	7	0.0	0.445	8.5	LOS A	2.4	61.9	0.31	0.17	0.31	31.2
Appr		452	1.9	0.445	8.6	LOS A	2.4	61.9	0.31	0.17	0.31	31.7
East: N 163 St												
1	L2	18	0.0	0.158	6.9	LOS A	0.6	14.2	0.50	0.47	0.50	32.0
6	T1	40	0.0	0.158	6.9	LOS A	0.6	14.2	0.50	0.47	0.50	32.2
16	R2	52	2.0	0.158	7.0	LOS A	0.6	14.2	0.50	0.47	0.50	31.7
Appr		109	1.0	0.158	7.0	LOS A	0.6	14.2	0.50	0.47	0.50	31.9
North: N Miami Ave												
7	L2	15	0.0	0.196	5.2	LOS A	0.8	20.0	0.19	0.09	0.19	33.0
4	T1	185	3.0	0.196	5.3	LOS A	0.8	20.0	0.19	0.09	0.19	33.1
14	R2	2	0.0	0.196	5.2	LOS A	0.8	20.0	0.19	0.09	0.19	32.6
Approach		202	2.8	0.196	5.3	LOS A	0.8	20.0	0.19	0.09	0.19	33.1
West: N 163 St												
5	L2	26	4.0	0.086	5.0	LOS A	0.3	7.6	0.33	0.22	0.33	32.6
2	T1	44	3.0	0.086	4.9	LOS A	0.3	7.6	0.33	0.22	0.33	32.8
12	R2	5	0.0	0.086	4.8	LOS A	0.3	7.6	0.33	0.22	0.33	32.4
Appr		75	3.1	0.086	4.9	LOS A	0.3	7.6	0.33	0.22	0.33	32.7
All V	icles	839	2.1	0.445	7.3	LOS A	2.4	61.9	0.31	0.20	0.31	32.1

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KITTELSON AND ASSOCIATES INC | Processed: Monday, May 17, 2021 6:16:12 PM
Project: H:\22\22756 - Miami-Dade TPO GPCl032 - Miami-Dade Intersection Safety AnalysislanalysisISIDRAITraffic Circle Analysis.sip8

MOVEMENT SUMMARY

Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} =10 w s \\ \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: N Miami Ave												
3	L2	5	0.0	0.311	6.7	LOS A	1.4	35.7	0.27	0.15	0.27	32.4
8	T1	295	3.0	0.311	6.8	LOS A	1.4	35.7	0.27	0.15	0.27	32.5
18	R2	11	0.0	0.311	6.7	LOS A	1.4	35.7	0.27	0.15	0.27	32.0
Appr		311	2.8	0.311	6.8	LOS A	1.4	35.7	0.27	0.15	0.27	32.5
East: N 163 St												
1	L2	17	0.0	0.083	5.2	LOS A	0.3	7.3	0.40	0.31	0.40	32.7
6	T1	32	0.0	0.083	5.2	LOS A	0.3	7.3	0.40	0.31	0.40	32.9
16	R2	20	0.0	0.083	5.2	LOS A	0.3	7.3	0.40	0.31	0.40	32.4
Appr		68	0.0	0.083	5.2	LOS A	0.3	7.3	0.40	0.31	0.40	32.7
North: N Miami Ave												
7	L2	12	0.0	0.201	5.2	LOS A	0.8	20.6	0.17	0.07	0.17	33.0
4	T1	191	3.0	0.201	5.3	LOS A	0.8	20.6	0.17	0.07	0.17	33.1
14	R2	7	0.0	0.201	5.2	LOS A	0.8	20.6	0.17	0.07	0.17	32.7
Approach		209	2.7	0.201	5.3	LOS A	0.8	20.6	0.17	0.07	0.17	33.1
West: N 163 St												
5	L2	11	14.0	0.093	5.4	LOS A	0.3	8.3	0.34	0.23	0.34	32.6
2	T1	71	0.0	0.093	4.9	LOS A	0.3	8.3	0.34	0.23	0.34	33.3
12	R2	1	0.0	0.093	4.9	LOS A	0.3	8.3	0.34	0.23	0.34	32.8
Appr		82	1.8	0.093	4.9	LOS A	0.3	8.3	0.34	0.23	0.34	33.2
All V	icles	671	2.4	0.311	5.9	LOS A	1.4	35.7	0.26	0.15	0.26	32.8

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KITTELSON AND ASSOCIATES INC | Processed: Monday, May 17, 2021 6:16:12 PM
Project: H:\22\22756 - Miami-Dade TPO GPCl032 - Miami-Dade Intersection Safety AnalysislanalysisISIDRAITraffic Circle Analysis.sip8

MOVEMENT SUMMARY

Site Category: (None)
Roundabout

Movement Performance - Vehicles												
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	Turn	Deman Total veh/h	$\begin{gathered} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance ft	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed mph
South: N Miami Ave												
3	L2	11	0.0	0.539	10.4	LOS B	3.4	86.1	0.39	0.24	0.39	30.7
8	T1	519	2.0	0.539	10.4	LOS B	3.4	86.1	0.39	0.24	0.39	30.9
18	R2	9	0.0	0.539	10.4	LOS B	3.4	86.1	0.39	0.24	0.39	30.4
Appr		540	1.9	0.539	10.4	LOS B	3.4	86.1	0.39	0.24	0.39	30.9
East: N 163 St												
1	L2	21	0.0	0.208	8.2	LOS A	0.7	18.9	0.55	0.55	0.55	31.5
6	T1	48	0.0	0.208	8.2	LOS A	0.7	18.9	0.55	0.55	0.55	31.7
16	R2	63	2.0	0.208	8.3	LOS A	0.7	18.9	0.55	0.55	0.55	31.1
Appr		131	1.0	0.208	8.2	LOS A	0.7	18.9	0.55	0.55	0.55	31.4
North: N Miami Ave												
7	L2	17	0.0	0.236	5.7	LOS A	1.0	25.0	0.22	0.11	0.22	32.7
4	T1	221	3.0	0.236	5.8	LOS A	1.0	25.0	0.22	0.11	0.22	32.9
14	R2	2	0.0	0.236	5.7	LOS A	1.0	25.0	0.22	0.11	0.22	32.4
Approach		240	2.8	0.236	5.8	LOS A	1.0	25.0	0.22	0.11	0.22	32.8
West: N 163 St												
5	L2	31	4.0	0.107	5.4	LOS A	0.4	9.5	0.37	0.27	0.37	32.4
2	T1	52	3.0	0.107	5.3	LOS A	0.4	9.5	0.37	0.27	0.37	32.6
12	R2	6	0.0	0.107	5.2	LOS A	0.4	9.5	0.37	0.27	0.37	32.2
Appr		90	3.1	0.107	5.3	LOS A	0.4	9.5	0.37	0.27	0.37	32.5
All V	icles	1000	2.1	0.539	8.6	LOS A	3.4	86.1	0.37	0.25	0.37	31.5

Site Level of Service (LOS) Method: Delay \& v/c (HCM 6). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 6).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies. Gap-Acceptance Capacity: Traditional M1.
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 8.0 | Copyright © 2000-2019 Akcelik and Associates Pty Ltd | sidrasolutions.com
Organisation: KITTELSON AND ASSOCIATES INC | Processed: Monday, May 17, 2021 6:16:13 PM
Project: H:\22\22756 - Miami-Dade TPO GPCl032 - Miami-Dade Intersection Safety AnalysislanalysisISIDRAITraffic Circle Analysis.sip8

APPENDIX H. DESIGN CHECKS

APPENDIXI. OPINION OF PROBABLE COST

N Miami Avenue at NE 163 Street
Miami-Dade TPO

VKITTELSON

Conceptual Roundabout Design

Engineer's Opinion of Probable Cost - Conceptual Improvements
Prepared By: Brandon W. Kelley

Conceptual improvements

Prepared By: Brandon W. Kelley				Date: May 25, 2021		
	PAY ITEM	DESCRIPTION	UNIT	TOTAL QUANTITY	UNIT PRICE	TOTAL COST
SECTION 1: ROADWAY						
1	011011	Clearing \& Grubbing	AC	0.22	\$20,613.10	\$4,534.88
2	01201	Excavation	CY	280.00	\$15.21	\$4,258.80
3	01604	Type B Stabilization	SY	389.00	\$3.97	\$1,544.33
4	285709	Optional Base, Base Group 09	SY	315.00	\$23.68	\$7,459.20
5	0327705	Milling Existing Asphalt Pavement, 2" Avg Depth	SY	1629.00	\$1.98	\$3,225.42
6	0334152	Superpave Asphaltic Concrete, Traffic B, PG 76-22	TN	108.00	\$130.00	\$14,040.00
7	0337-7-80	Asph Conc FC, Traffic B, FC-9.5, PG 76-22	TN	108.00	\$219.69	\$23,726.52
8	350-30-13	Concrete Pavement for Roundabout Apron, 12" depth	SY	47.00	\$218.34	\$10,261.98
9	0520-1-10	Concrete Curb and Gutter, Type F	LF	326.00	\$17.49	\$5,701.74
10	0520-2-4	Concrete Curb, Type D	LF	109.00	\$35.42	\$3,860.78
11	0520-2-8	Concrete Curb and Gutter, Type RA	LF	142.00	\$22.53	\$3,199.26
12	520-70	Concrete Traffic Separator, Special, Variable Width	SY	112.00	\$177.30	\$19,857.60
13	0522-1	Concrete Sidewalk and Driveways, 4"	SY	228.00	\$32.84	\$7,487.52
14	05272	Detectable Warnings	SF	80.00	\$28.22	\$2,257.60
15	0570-1-2	Performance Turf, SOD	SY	321.00	\$3.72	\$1,12.12
SUBTOTAL ROADWAY						112,610
SECTION 2: STRIPING						
16	0710-11290	Painted Pavement Markings, Standard, Yellow, Island Nose	SF	24.00	\$2.95	\$70.80
17	0711-16-102	Thermoplastic, Standard - Other Surfaces, White, Solid, 6"	GM	0.21	\$3,995.30	\$839.01
18	0711-16-201	Thermoplastic, Standard - Other Surfaces, Yellow, Solid, 6"	GM	0.25	\$3,993.45	\$998.36
19	0711-11123	Thermoplastic, STD, White, Solid, 12" For Crosswalk and Roundabout	LF	193.00	\$1.62	\$312.66
20	0711-11125	Thermoplastic, STD, White, Solid, 24" For Stop Line and Crosswalk	LF	120.00	\$3.51	\$421.20
21	0711-11224	Thermoplastic, STD, Yellow, Solid, 18" For Diagonals or Crosswalk	LF	39.00	\$2.42	\$94.38
22	071111144	Thermoplastic, Standard, White, 2-2 Dotted Extension Line, 12" for Roundabout	GM	0.03	\$4,150.00	\$124.50
23	0711-14160	Thermoplastic, Preformed, White, Message	EA	2.00	\$280.89	\$561.78
		SUBTOTAL STRIPING				3,423

SECTION 3: SIGNING							
24	0700111	Single Post Sign, F\&I Ground Mount, Up to 12 SF	EA	20.00	\$299.42		\$5,988.40
25	0700160	Single Post Sign, Remove	EA	6.00	\$18.93		\$113.58
SUBTOTAL SIGNING					\$		6,102
SECTION 4: UTILITIES							
26		Utility Relocation, Wooden Pole	EA	1.00	\$10,000.00		\$10,000.00
27	108024500	Utility Fixture, Valve Assembly, Adjust/Modify	EA	3.00	\$358.08		\$1,074.24
28		Telephone Pedestal, Relocate	EA	1.00	\$6,000.00		\$6,000.00
SUBTOTAL DRAINAGE					\$		17,074

SECTION 5: ADDITIONAL MODIFICATIONS						
29	Sediment Barrier	LF	1015.00	\$1.18		\$1,197.70
SUBTOTAL ADDITIONAL MODIFICATIONS				\$		1,198

SECTION 6: LIGHTING						
30	Intersection Lighting, 4 Light Pole Complete, F\&I Standard Pole, 30' Mounting Height Including Connections/Wiring	LS	1.00	\$30,000.00		\$30,000.00
SUBTOTAL ADDITIONAL MODIFICATIONS					\$	30,000

I his sheet compiles the data trom summary tables in

Outputs

Agency:	MD TPO
Project Name:	MD TPO Intersection Safety Analysis
Project Reference:	22756.32
Intersection:	N Miami Avenue and N 163 Street
City:	Miami
State:	Florida
Performing Department or Organization:	KAI
Date:	$4 / 22 / 2021$
Analyst:	RMM
Analysis Type	At-Grade Intersection

Analysis Summary

Cost Categories	Net Present Value of Costs			
	Two-Way Stop Control		Roundabout	
Planning, Construction \& Right of Way Costs	\$	\$	442,639	
Post-Opening Costs	\$ 14,590	\$	72,952	
Auto Passenger Delay	\$ 2,542,835	\$	1,659,305	
Truck Delay	\$ 150,434	\$	98,164	
Safety	\$ 5,800,480	\$	1,160,462	
Total cost	\$8,508,339		\$3,433,522	Net Present Value of Benefits Relative to Base Case

APPENDIX K. FDOT ELECTRONIC REVIEW COMMENTS (ERC)

Submittal Report

Financial Project:	$249796-8-32-01$	Submittal Type:	SAFETY REPORT
Submittal Phase:	OTHER	Submittal Staff Type:	CONSULTANT
Received Date:	$5 / 7 / 2021$	Response Due Date:	$5 / 24 / 2021$
Grace Period:	0	District:	SIXTH
Status:	OPEN	Create Date:	$5 / 7 / 2021$
Create User Id:	RD652NP	Last Update:	$5 / 7 / 2021$
		Last Update User Id:	RD652NP

Description:
249796-8: TWO 32_N Miami Avenue and N 163 Street Intersection Safety Analysis_20210506 Group: PRELIMINARY ENGINEERING Phase Review Type: Safety Study
Status: Submitted
Phase Initiation Date: 5/7/2021
Comments Due Date: 5/21/2021 Days Allowed for Review: 15
Review Meeting: 5/24/2021 8:00 PM to 8:15 PM @ No meeting required
Field Meeting:
Plans Format: Electronic
Comments: Please have Benazir Portal as the PM for responses. bportal@kittelson.com
Direct: 954.653.5634
Please add Ryan Mansfield as a Designer to respond to comments.
rmansfield@kittelson.com
Direct: 407.373.1136

Threads:

Name	Assignment	Due Date	Status	Comments	
Alejandro Almaguer	REVIEWER	$5 / 21 / 2021$	ACTIVE	0	
Name	Assignment	Due Date	Status	Comments	
Alejandro Casals	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0	
Name	Assignment	Due Date	Status	Comments	
Alejandro Gomez	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0	
Name	Assignment	REVIEWER		Due Date	Status
Amanda De Cun		Current Holder	Reference	Categories	Comments
No Status		General	ENVIRONMENTAL MANAGEMENT OFF.		

The class of action will be determined once the full scope of work and funding information is available.
Benazir Portal 5/24/2021 1
Noted. No action needed in response to the comment at this study stage. Thank you.

No	Status	Current Holder	Reference	Categories
7	COMMENT AGREED WITH		General	ENVIRONMENTAL MANAGEMENT OFF.
	Created By	Created On	Version	Delegate For
	Amanda De Cun	$120 / 2021$	1	

Please be aware that this project location is within the consultation area for the Florida bonneted bat, which is listed as an endangered species. A field review may be warranted to determine if roosting and/or foraging habitat exists within the project corridor for any tree and/or bridge impacts, and coordination with the U.S. Fish and Wildlife Service may be required.

Noted. This comment will be addressed under the final design stage. Thank you.

No	Status	Current Holder	Reference	Categories
8	COMMENT AGREED WITH		General	ENVIRONMENTAL MANAGEMENT OFF.
	Created By	$5 / 20 / 2021$	Version	Delegate For
	Amanda De Cun	1		

Please be aware that this project is within the consultation area for the Everglade snail kite the Wood stork and may inhabit or migrate through the project area.
Benazir Portal
5/24/2021
1
Noted. This comment will be addressed under the final design stage. Thank you.

No	Status	Current Holder	Reference	Categories
9	COMMENT AGREED WITH		Contact Information	ENVIRONMENTAL MANAGEMENT OFF.
	Created By	Created On	Version	Delegate For
	Amanda De Cun	$5 / 20 / 2021$	1	

Should you have any questions or require clarification regarding these environmental comments, please contact Amanda De Cun at (305) 6407460 or Amanda.DeCun@dot.state.fl.us.
Benazir Portal
5/24/2021
1
No action needed in response to the comment. Thank you.

Name		Assignment		Due Date	Status	Comments
Amanda Montgomery		REVIEWER		5/21/2021	ACTIVE	2
No	Status		Current Holder	Reference	Categor	
11	COMMENT AGREED WITH				ENVIRO	
	Created By		Created On	Version	Delegat	
	Amanda Mont		5/21/2021	1		

No local, state, or federal environmental permits are anticipated based on a review of the recommended scope of work.
Benazir Portal 5/24/2021 1
Noted. No action needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
12	COMMENT AGREED WITH			ENVIRONMENTAL PERMITS
	Created On	Version	Delegate For	
	$5 / 21 / 2021$	1		
	Amanda Montgomery			

Please contact me at Amanda.Montgomery@dot.state.fl.us with any questions pertaining to environmental permits for this project.
Benazir Portal
5/24/2021
1
No action needed in response to the comment. Thank you.

Name	Assignment	Due Date	Status	Comments
Antonette Adams	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Arturo Gomez	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Barbara J Culhane	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Barbara Russell	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Benazir Portal	CONSULTANT PROJECT MANAGER	$5 / 24 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Bencze Vajta	REVIEWER	Assignment	$5 / 21 / 2021$	ACTIVE

Figure 8.
The proposed sidewalks should be extended to connect to the existing sidewalk and avoid creating a sidewalk gap.
(a) Southwest corner, extend about 20 ft . west,
(b) Southeast corner, extend about 35 ft . east.

Benazir Portal 5/24/2021
1
Noted. The sidewalks will be extended as noted.

No	Status	Current Holder	Reference	Categories
22		Sheet 8	OTHER	
COMMENT AGREED WITH	Created On	Version	Delegate For	
Carl Sandin	$5 / 21 / 2021$	1		
	Verify the sheet scale on Figure 8. The $1 "=40$ ' scale shown does not appear correct.			
Benazir Portal	$5 / 24 / 2021$	1		

Noted. Sheet scale will be verified. Thank you.

No	Status	Current Holder	Reference	Categories
23	RESPONSE SUBMITTED	Carl Sandin	Appendix H	ESTIMATES,PAVEMENT DESIGN
	Created By	Created On	Version	Delegate For
	Carl Sandin	$5 / 21 / 2021$	1	

Appendix H, Cost Estimate.
(a) Verify the pavement quantities for pay items 334-1-52 and 337-7-80. Based on the values for pay items 285-709 and 327-70-5, the quantities for 334-1-52 and 337-7-80 are underestimated.
(b) The estimate assumes milling \& resurfacing and widening the existing pavement. Confirm if full pavement reconstruction is required to construct the roundabout.
Benazir Portal
6/23/2021
1
Pavement design already accounted for full depth outside of existing pavement limits.

No	Status	Current Holder	Reference	Categories
24	RESPONSE SUBMITTED	Carl Sandin	Appendix H	DRAINAGE,ESTIMATES
	Created By	Created On	Version	Delegate For
	Carl Sandin	$5 / 21 / 2021$	1	

Appendix H, Cost Estimate.
Add costs for drainage structures, since the project adds curb \& gutter at the roundabout.
Benazir Portal
6/23/2021
1
Underground drainage structures are not proposed as part of this project. No survey was procured during this phase of design so existing systems are also unknown. It is anticipated drainage will flow from curbs into existing grass areas. Further drainage analysis will be completed during final design and after survey attainment.

| Name | Assignment | Due Date | Status | Comments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Carlos Benitez | REVIEWER | $5 / 21 / 2021$ | ACTIVE | 0 |
| Name | Assignment | Due Date | Status | Comments |
| Carlos Perez | REVIEWER | $5 / 21 / 2021$ | ACTIVE | 0 |
| Name | Assignment | Due Date | Status | Comments |
| Carlos Perez | REVIEWER | $5 / 21 / 2021$ | ACTIVE | 0^{\star} |
| Name | Assignment | Due Date | Status | Comments |
| Christopher Tavella | REVIEWER | $5 / 21 / 2021$ | ACTIVE | 0^{\star} |
| Name | Assignment | Due Date | Status | Comments |

Diana Peralta		REVIEWER		5/21/2021	ACTIVE	0 *
Name		Assignment		Due Date	Status	Comments
Dima Poe		REVIEWER		5/21/2021	ACTIVE	8
No	Status		Current Holder	Reference	Categor	
20	COMMENT AGREED WITH			General	ACCESS	AFETY,OTHER
	Created By		Created On	Version	Delegat	
			5/21/2021	1		

General: Were other short term recommendations considered such as providing supplementary stop signs (as to have two stop signs) for the EB/WB approaches? There maybe a sight obstruction of the stop sign on the eastbound approach from the power pole on the south side of N 163 Street. Were sight triangles checked in the field? Also, please consider conducting a speed study to determine if there are speeding issues in the vicinity of the intersection.
Benazir Portal 6/23/2021 1
Phased / short-term improvements will be considered as the FY funding availability is determined. The comment notes will be included for consideration.
Benazir Portal 6/23/2021 1
Phased / short-term improvements will be considered as the FY funding availability is determined. The comment notes will be included for consideration.

No	Status	Current Holder	Reference	Categories
21	RESPONSE SUBMITTED	Dima Poe	Page 14	ACCESS MANAGEMENT,SAFETY,OTHER
	Created By	Created On	Version	Delegate For
	Dima Poe	$5 / 21 / 2021$	1	

Page 14 - ICE Results: Please explain why AWSC was not moved forward as well for operational analysis. AWSC had a lower than existing condition predicted crash values and a safety ranking of 2 , it does have a higher v / c ratio however that is expected since north/south movements are going from free to a stop control. Please consider also forwarding AWSC in addition to the mini-roundabout option for an operational and benefit/cost analysis within the study.
Benazir Portal
6/23/2021
1
While AWSC does report better intersection performance for the project's purpose and need (safety ranking) under Stage 1, the control strategy does not mitigate the intersection leading crash type of angle crashes. For comparison, the N Miami Ave and N 195 Street operates under AWSC and yet reports angle crashes as the leading crash type. No action needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
25	RESPONSE SUBMITTED	Dima Poe	Page $18-$ Concept	ACCESS MANAGEMENT,SAFETY,OTHER
	Created By	Created On	Version	Delegate For
	Dima Poe	$5 / 21 / 2021$	1	

Page 18 (Sheet 8) - Roundabout Concept: Please show existing condition elements within proposed conceptual design. There appears to be more elements that may need relocation in addition to the singular power pole. Note that the power pole to be relocated has a lighting attached, will relocating it require additional lighting to be installed at the intersection/crosswalks?
Benazir Portal
6/23/2021
1
A photometric analysis will be needed as part of final design. It is anticipated the intersection will be lighted to meet recommended FDM and IES lighting level recommendations. The reuse of the existing fixture will be revisited during this analysis.

No	Status	Current Holder	Reference	Categories
26	RESPONSE SUBMITTED	Dima Poe	Page $18-$ Concept	ACCESS MANAGEMENT,SAFETY,OTHER
	Created By	Created On	Version	Delegate For
	Dima Poe	$5 / 21 / 2021$	1	

Page 18 (Sheet 8) - Concept: Are the proposed crosswalks warranted? Please make sure that all proposed sidewalks extend to connect to existing sidewalks along N 163 Street. Note that additional relocations may be necessary if the proposed sidewalks are constructed.
Benazir Portal
6/23/2021
1
Given the proposed configuration (mini-roundabout) is common best practice to add marked crosswalks to better delineate expected path for all road users.

Per County requirements, new projects are required to provide a sidewalk connections. For blocks without the existing crosswalk connection, it is required to add one concrete slab at a minimum.

No	Status	Current Holder	Reference	Categories
27	COMMENT AGREED WITH		Page 20	ACCESS MANAGEMENT,SAFETY,OTHER
	Created By	Created On	Version	Delegate For
	Dima Poe	$51 / 2021$	1	

Page 20 Benefit/Cost: The overall B / C is very close to the threshold of 1.0 .
Benazir Portal
5/24/2021
1
Noted. The Benefit-Cost evaluations have been updated to include the improvement's life cycle of 20 years yielding higher B/C rates and NPV. No action needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
28	COMMENT AGREED WITH		Appendix A, Genera	ACCESS MANAGEMENT,SAFETY,OTHER
	Created By	Created On	Version	Delegate For
	Dima Poe	$5 / 21 / 2021$	1	

General, Appendix A - Please note that there are No Parking Signs on the NE, NW, SW corners which appear to be installed within late 2018 early 2019 (from Google Maps Historic Street View). There may have been an illegal parking issue on these corners that may have obstructed drivers view in the past and could have attributed to the crash patterns.
Benazir Portal 5/24/2021 1
Agreed. This was an element considered for the proposed design. No action needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
29	RESPONSE SUBMITTED	Dima Poe	Page 21	ACCESS MANAGEMENT,SAFETY,OTHER
	Created By	Created On	Version	Delegate For
	Dima Poe	$5 / 21 / 2021$	1	

Page 21 - Coordination: Was there a meeting or discussion with Miami-Dade Transit regarding the proposed concept and impacts to the transit/bus route that traverses N Miami Avenue? If not they should be contacted to obtain their feedback.

Benazir Portal

6/23/2021
1
Noted. The design team worked with MDC to be able to accommodate transit vehicles through the proposed design. No action needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
30	RESPONSE SUBMITTED	Dima Poe	Operational Analysis SAFETY,OTHER	
	Created By	Created On	Version	Delegate For
	Dima Poe	$5 / 21 / 2021$	1	

Operational Analysis: Please consider conducting the analysis for the two scenarios (existing condition and roundabout) with the same software for consistency and comparability. Synchro should still allow for an HCM 2010 analysis/report if required.
Benazir Portal 6/23/2021 1
Understood. Please refer to Page 16 of the report for justification on the use of HCM 6th Edition versus SIDRA HCM 2010 results. No action needed in response to the comment. Thank you.

Name	Assignment	Due Date	Status	Comments
Dionne Richardson	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0^{*}
Name	Assignment	Due Date	Status	Comments
Elio Espino	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Elisa Azcona	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Erki Suarez	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Felipe Gonzalez	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Felix Hernandez	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	DEVIEWER	$5 / 21 / 2021$	ACTIVE

Proposed roadway will require canopy and root trimming of trees near the north end to accommodate new layout and to provide appropriate vertical clearances per ADA and the FDOT Maintenance Rating Program. One canopy tree at the southeast corner appears to have lost major portions of its structure such that its removal to accommodate the new layout would be appropriate. The work should be performed per FDOT Standard Plans Index 110-100 at the direction of a certified arborist.
Benazir Portal 5/24/2021 1
Noted. This comment will be addressed under the final design stage. Thank you.

Name	Assignment	Due Date	Status	Comments
Kirenia Borbolla	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Krish Dial	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Leonard Salazar	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Luis Lopez	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Marvin Guillen	REVIEWER	$5 / 21 / 2021$	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Mauricio Gomez	LEAD REVIEWER	$5 / 21 / 2021$	ACTIVE	0

The preliminary cultural review identified no archaeological or historic properties within the area recommended for improvements. The Planning and Environmental Management Office (PLEMO) will need to revisit this project during design once the full scope of work and funding information is available. This information is needed to confirm an area of potential effect (APE) and to determine the appropriate scope of coordination with state and/or federal agencies. If you have any questions or require clarification for these comments, please contact Max Adriel Imberman at 813-330-9111/ max_imberman@janus-research.com.

$$
\begin{array}{lll}
\text { Benazir Portal } & 5 / 24 / 2021 & 1
\end{array}
$$

Noted. No action needed in response to the comment at this study stage. Thank you.

Name		Assignment		Due Date	Status	Comments
Michael Hughes		REVIEWER		5/21/2021	ACTIVE	0 *
Name		Assignment		Due Date	Status	Comments
Michael Miller		REVIEWER		5/21/2021	ACTIVE	1
No	Status		Current Holder	Reference	Categor	
1	COMMENT AGREED WITH				CONTA	
	Created By		Created On	Version	Delegat	
	Michael Miller		5/18/2021	1		

There are no documented contaminated sites within a 500 -foot radius of the project corridor. Therefore, no contamination impacts are antininstar
Benazir Portal 5/24/2021 1
Noted. No action needed in response to the comment. Thank you.

Name		Assi		Due Date	Status	Comments
Mikhail Dubrovsky		LEAD		5/21/2021	ACTIVE	0
Name		Assi		Due Date	Status	Comments
NAGUL PRABAHARAN		REVI		5/21/2021	ACTIVE	1
No	Status		Current Holder	Reference	Categor	
10	COMMENT AGREED WITH				SAFETY	
	Created By		Created On	Version	Delegat	
	NAGUL PRABAH		5/21/2021	1		

Looks like roundabout is the best option for this location to reduce the number of crashes. Right-of-way constraints can be an issue.
Benazir Portal
5/24/2021
1
No ROW impacts are anticipated with the proposed improvements. Please let us know if additional information is needed to clarify this project component. Thank you.

Name		Assignment		Due Date	Status	Comments
Osvaldo Diaz		REVIEWER		5/21/2021	Active	6
No	Status		Current Holder	Reference	Categories	
13	COMM	ITH		Proposed improvement, page 18, plan view sheet 8	ROADWAY	
	Created		Created On	Version	Delegate For	
	Osvaldo		5/21/2021	1		

Proposed improvement, page 18, plan view sheet 8 . The geometric information of proposed roundabouts should be provided in the diagram as radius of the curves, lane crosswalk distances etc. It is important to develop roadway geometry that encourages drivers to gradually slow down as they approach the roundabout.
Benazir Portal 5/24/2021 1
The proposed geometry limits roundabout entry speed to 25 mph as recommended by NCHRP Report 672 . Fastest path diagrams will be included in the final report. Detailed radius and other distances will be provided during the final design stage. No further action is needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
14	COMMENT AGREED WITH		Proposed improvement, page 18, plan view sheet 8	LANDSCAPING
	Created By	Created On	Version	Delegate For
	Osvaldo Diaz	5/21/2021	1	

Proposed improvement, page 18, plan view sheet 8 . Consider proposing prominent landscaping in the center of the island to increase visibility of the central island and provides a visual queue to approaching drivers that they are entering a low-speed environment.
Benazir Portal 5/24/2021 1

Noted. This comment will be addressed under the final design stage. Thank you.

No	Status	Current Holder	Reference	Categories
15	RESPONSE SUBMITTED	Osvaldo Diaz	Proposed improvement, page 18, plan view sheet	ROADWAY,SIGNING AND MARKING

Proposed improvement, page 18, plan view sheet 8 . Proposed crosswalk in the east side should be divide in two crosswalk and connected on a refuge area for the pedestrian in the splitter island, per FDM 213-1.

Benazir Portal
6/23/2021
1
The splitter island nose meets the preferred radius of $2^{\prime}-0$ ". Placing the crosswalk east of the existing transmission line would place the pedestrian behind the pole before crossing and shield them from motorist view. It is recommended to keep the crosswalk as shown. No further action is needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
16	COMMENT AGREED WITH		Proposed improvement, page 18, plan view sheet	ROADWAY,SIGNING AND MARKING

Proposed improvement, page 18, plan view sheet 8 . Proposed crosswalks in the north, west and south sides should be connected to a wider area of the splitter island to provide a bigger pedestrian refuge, per FDM Exhibit 213-1.
Benazir Portal 5/24/2021 1
The proposed refuge islands meet the $6^{\prime}-0$ " minimum criteria requirement. No further action is needed in response to the comment. Thank you.

No	Status	Current Holder	Reference	Categories
17	RESPONSE SUBMITTED	Osvaldo Diaz	Proposed improvement, page 18, plan view sheet	SIGNING AND MARKING
			8	Delegate For
			Version	
	Created On	1		
	Csvaldo Diaz	$5 / 21 / 2021$		

Proposed improvement, page 18, plan view sheet 8. Key Right/Object marker (R4-7)/OM1-1 signs should be provided in the narrow parts of splitter island, per FDM Exhibit 213-3.
Benazir Portal 6/23/2021 1
The proposed splitter islands are designed to be fully mountable and signs would be frequently damaged if installed. In addition, NCHRP Report 672 recommends these sign assemblies on NON-MOUNTABLE splitter islands. Median noses can be painted with high retro reflective yellow paint for better visibility. Note that FDM standards are for full size and multi-lane roundabouts.

| No | Status | Current Holder | Reference | Categories |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 18 | COMMENT AGREED WITH | | On Appendix H,
 Probably Cost,
 sheet 1. | ESTIMATES,ROADWAY |

On Appendix H, Probably Cost, sheet 1 . The pay item Type D curb should be included for the central Island curb, per FDM Exhibit 213-2.
Benazir Portal
5/24/2021
1
Noted. The cost estimate has been updated to include this pay item. No further action is needed in response to the comment. Thank you.

Noted. No action needed in response to the comment. Thank you.

Name	Assignment	Due Date	Status	Comments
Ryan Mansfield	LEAD DESIGNER	$5 / 24 / 2021$	ACTIVE	0

$\left.\begin{array}{llllll}\hline \text { Name } & \text { Assignment } & & \text { Due Date } & \text { Status } & \text { Comments } \\ \hline \text { Simon } & \text { Gutierrez } & \text { REVIEWER } & & 5 / 21 / 2021 & \text { ACTIVE }\end{array}\right]$ 1

Noted. No action needed in response to the comment. Thank you.

Name	Assignment	Due Date	Status	Comments
Simon Prilutsky	REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Stefan Escanes	REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Steven James	LEAD REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Tiffany Gehrke	LEAD REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
X Negrin	LEAD REVIEWER	5/21/2021	ACTIVE	0*
Name	Assignment	Due Date	Status	Comments
Xiomara Nunez	LEAD REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Yimy Perez	REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Zachary Taylor	REVIEWER	5/21/2021	ACTIVE	0
Name	Assignment	Due Date	Status	Comments
Zurelys Perez De Alejo	LEAD REVIEWER	5/21/2021	ACTIVE	0

[^0]: * Note: 86 pph applies as the lower threshold volume for the 80% volume threshold.

