

Short Range Traffic Study For the Airport West Area

Final Report

Prepared by: David Plummer & Associates, Inc.

> July 2002 DPA Project #00169

TABLE OF CONTENTS

			Page
List c	of Exhi	bits	ii
		endices	
1.0	INT	RODUCTION	1
	1.1	Study Background and Objectives	
	1.2	Coordination	2
2.0	DAT	FA DEVELOPMENT	5
	2.1	Existing and Anticipated Short-Term Developments	5
	2.2	Forecast Long-Term Development	
	2.3	Previous Studies	7
3.0	ARI	EA MARKET RESEARCH AND FINDINGS	8
4.0	DAT	FA COLLECTION AND ANAYLSIS	
	4.1	Selection of Corridors and Intersections for Observation	
	4.2	Traffic Counts	
		4.2.1 Intersection Counts and Volumes	
		4.2.2 Roadway Counts and Volumes	
	4.3	Existing Conditions Intersection Analysis	
	4.4	Planned and Programmed Improvements	
	4.5 4.6	Corridor Field Observations Intersection Field Observations	
	4.0		23
5.0		COMMENDED CORRIDOR IMPROVEMENTS	
	5.1	Traffic Operations Improvements	
	5.2	Physical Improvements	
	5.3	Intelligent Transportation Improvements (ITS) Improvements	
6.0	DEV	ELOPMENT OF REVISED DESIGN STANDARDS	
7.0	TRA	ANSFERABLE SOLUTIONS	
8.0	DEV	ELOPMENT OF IMPLEMENTATION PLAN	43
	8.1	Implementation Plan	
	8.2	Funding	45
9.0	CON	NCLUSION	48

LIST OF EXHIBITS

<u>Exhibit</u>		Page
1	Study Area	3
2	Intersections and Corridors	15
3A	Intersection Volumes (Existing AM Peak)	17
3B	Intersection Volumes (Existing Midday Peak)	18
3C	Intersection Volumes (Existing PM Peak)	19
4	Two-Way Link Capacity Analysis	20
5	Existing Conditions Intersection Analysis	21
6	2002 TIP Improvements	22
7	2025 Long Range Plan Improvements	24
8	NW 36 Street / NW 87 Avenue Directional Movement Adjustments	27
9	Intersection Analysis with Signal Timing Improvements	
10	Intersection Control Radii Standards	35

LIST OF APPENDICES

Appendix

А	Sample Surv	/ey
---	-------------	-----

- B Summary of Survey Responses
- C Existing Traffic Volumes
- D Suggested Traffic Design Standards
- E Background Research
- F References

1.0 INTRODUCTION

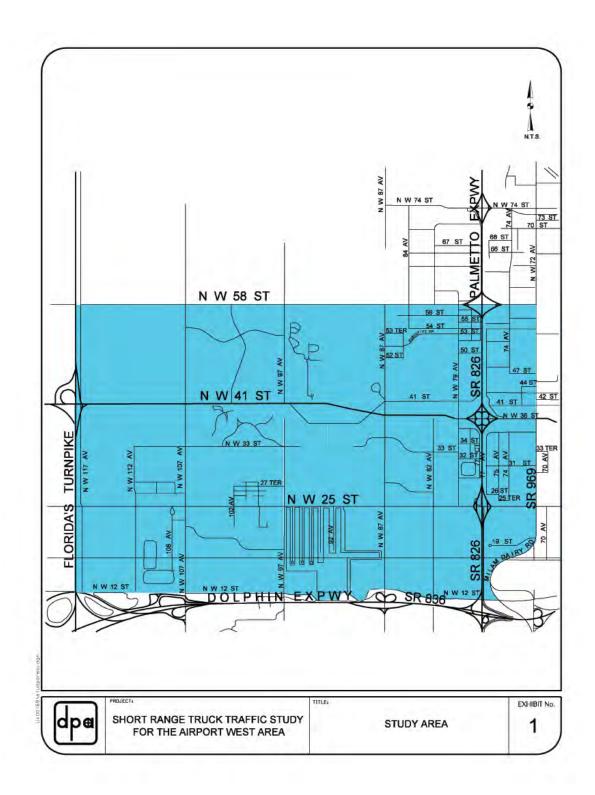
1.1 Study Background and Objectives

Over the past half century, the area west of Miami International Airport (MIA) in Miami-Dade County, Florida, has grown from undeveloped quasi-rural low-density scattered mixed residential, commercial, and industrial use land to one of the mainstay industrial and office employment areas in the County. The area, now popularly known as Airport West, has expanded from the lands immediately adjacent to and west of MIA to encompass an area of more than 30 square miles, now traversed by three major expressways, Florida's Turnpike, the Palmetto Expressway, and SR 836, and a variety of major section and half-section arterials. During the past 50 years, growth has been spectacular. And while industrial and commercial uses have proliferated, and dominate much of the Airport West Area (AWA), commercial office space and retail have also taken hold, and residential development has grown in the north-central sections as well.

Tremendous growth in both residential, employment, and supply travel have accompanied the growth in land use, leading to high levels of peak congestion throughout the AWA, and to significant all-day traffic volumes as well. And the mixes of land uses and different types of transportation needs these land uses generate have created problems for personal and commercial traffic across the AWA. Auto-truck conflicts are worse here than in most other areas of Miami-Dade due to high number of freight industry firms located west of MIA. The location of many shippers, freight forwarders, and warehouses catering to not only domestic goods movement, but to nationally important international trade, puts many trucks on the AWA roads.

That, coupled with the thousands of area workers who daily arrive by car during peak periods, plus the thousands of residents who leave the greater AWA during the peaks to get to jobs outside the area, puts a tremendous strain on the roads of AWA. Many if not most major

thoroughfares are over capacity during peaks, the peaks are spreading, and mid-day congestion levels are high as well. Significant congestion results from trucks using and trying to make their way on roads ill-designed for trucks in general, and especially for the larger, heavy, less-maneuverable vehicles known as 'heavy trucks.'


The turning radii at the intersections, length and width of turning lanes, and private driveways are among the factors that increase the potential of traffic crashes and congestion within the area. There have been three previous freight and/or area-oriented studies completed. One was a countywide initial freight movement research effort, the second was an area-specific study that dealt with all vehicle modes, and a third study was limited to a very specific MIA-oriented roadway improvement project.

This study is oriented towards developing recommendations for alleviating localized truck movement problems within the AWA. The AWA as defined for this study is the area generally bounded by NW 58^{th} Street on the north and SR 836 on the south, and runs from NW 72^{nd} Avenue (Milam Dairy Road) on the east to the Turnpike (HEFT) on the west, an area of some 13 square miles. (See Exhibit 1).

The objectives of this study are to develop a set of standards and an implementation plan to better accommodate truck traffic and commercial truckers' needs in the AWA.

1.2 Coordination

A Study Advisory Committee (SAC) was established which included representatives from Airport West Transportation Management Initiative (AWTMI), the MPO, and the consultant team. The SAC assisted in the development of the questionnaire used to obtain user data

regarding types and locations of travel problems in the study area, as well as helping coordinate, disseminate, and monitor the survey. James Murphy from South Florida Commuter Services, who is staff assistant to the AWTMI, greatly facilitated contacts, data collection, and questionnaire distribution efforts as well

In developing approaches to address truck traffic problems in the Study Area, it is important to consider not only current conditions, but those expected to exist in the future as well. By proactively considering anticipated future development and more importantly, the anticipated transportation impacts of that increased development on facilities and on traffic more appropriate improvements can be recommended.

If additional development either requiring truck movements for supplying retail and grocery firms, for example or even more importantly, directly contributing to increasing day-in, day-out truck traffic warehouse and shipping firms, for example, is known, then the need for roadways that can specifically handle trucking can not only be anticipated, but actions taken to increase their suitability for actually dealing with trucks. And it will further underscore the need to better handle those trucks already contributing to area congestion as well.

2.0 DATA DEVELOPMENT

2.1 Existing and Anticipated Short-Term Developments

A list of existing developments in the Study Area was obtained from the Airport West Transportation Management Initiative (AWTMI). The AWTMI is a transportation management association (TMA) created to address and ameliorate traffic problems in a specific area. TMAs are usually public-private cooperative groups; in general, whose members and local and/or state governments cooperatively fund staff to assist the TMA in accomplishing its efforts. James Murphy is staff to the AWTMI, and is an employee of south Florida Commuter Services (SFCS), a state program that helps initiate and nurture TMAs across the state. Mr. Murphy's help was invaluable in coordinating with the AWTMI and its members and in acquiring data describing the area.

The following list, received Mid-March of 2001 from the AWTMI, presents development information pertinent to the Study Area:

- Building development on the SW corner of NW 36 Street and NW 82 Avenue
- Office park development and warehouse development along NW 25 Street from NW 107 Avenue to NW 119 Avenue
- Ground breaking for new developments along NW 41 Street from NW 107 Avenue to the Florida's Turnpike; this area is developing a mixture of mixed-use facilities including pharmacies/shopping centers, gas stations, restaurants, and warehouse distribution centers

- Steady increase of medium and small warehouse facilities along NW 12 Street from NW 87 Avenue to NW 107 Avenue
- The International Corporate Park, located along NW 97 Avenue to NW 107 Avenue and between NW 12 Street and NW 25 Street, has some unoccupied warehouse facilities that are starting to show some new activity from the tenants moving in

2.2 Forecast Long-Term Development

Along with the specifics noted above, there is capacity for continued growth in commercial, retail, office, and residential development in the Study Area. The Miami-Dade Planning Department provides projections to, among others, the Miami-Dade MPO, which develops the Long Range Transportation Plan (LRTP) for the County. The LRTP indicates that over the next 25 years, the Northwest area, which includes the AWA area, will experience an increase of 46% in population, and an increase of 43% in employment.

All increases in growth, both population and employment, point to increasing auto traffic as workers will need to access jobs. But increases in commercial and industrial employment also point to increases in truck traffic as well. Additionally, as more and more of the economy becomes much more service-oriented, there is also expected an accompanying increase in small-to-medium size truck traffic as more plumbers, electricians, and other mobile service and repair workers are needed to handle growth in the other sectors.

Therefore both short-term and long-range growth projections indicate that truck traffic cannot be expected to go away or improve, but that it will continue. And it underscores the importance of addressing ways and means to accommodate trucks in the Airport West Area.

2.3 Previous Studies

While public sector general transportation planning for trucks and freight in general is relatively new, there have been a few local studies performed to explore ways of planning better transportation systems and facilities with trucking and freight and goods movements in mind. Research was conducted to gather data on existing and projected traffic volumes that were specifically pertinent to this study's area of interest, the AWA. Truck volumes, roadway levels of service, assumptions of growth and development, and especially recommendations forwarded from these studies which may have addressed truck-compatible roadway design features and standards were compiled.

One study addressing freight movement in general, and two focusing on freight-oriented transportation improvement in the study area itself, were obtained and reviewed. They were the Miami-Dade County Freight Movement Study, the Travel Demand Study for NE 25th Street, and the Preliminary Engineering Report for NW 25th Street.

The 1996 Freight Movement Study was a general overview of freight and trucking in Miami-Dade County that examined how the County's transportation system was affected by various freight movements, what roads and routes were frequented by trucks, truck volumes on major County highways, and included a review of trucking and roadway conditions and design standards as well.

The NW 25th Street corridor studies evaluated various traffic conditions between NW 67th and 87th Avenues, and specifically examined truck movement demands for SR 826, the Palmetto Expressway, and the MIA West Cargo Area. MIA is one of the world's leading cargo air centers, and alleviating truck movement delays between "Cargo City" and various freight handling concerns in the AWA, among other areas, was a main objective of the efforts. Detailed summaries of the highlights for all three studies are included in Appendix E.

3.0 AREA MARKET RESEARCH AND FINDINGS

An AWTMI contacts census was conducted in April 2001 with the help and guidance of the AWTMI and assistance from the AWA South Florida Commuter Services representative. The survey was first developed by the consultant team and then refined by the SAC in consultation with AWTMI and SFCS.

The survey form was concise, and consisted of only eight questions, along with a brief introduction and optionally volunteered contact information on a single sheet printed front and back. It queried respondents for information considered by the study team as most representative of the types and kinds of problems typically experienced by the AWTMI members, and AWA businesses, suppliers, and visitors. The survey form consisted five multiple-choice questions and three fill-in-the-blank inquiries. All multiple choice questions allowed respondents to add other responses as well except for the time-of-day designation, where the team divided the day into eight typical transportation planning periods and asked the respondent to select the most applicable time frame. A sample instrument is included in Appendix A.

The AWTMI faxed copies of the survey instrument to the businesses on its distribution list; about 100 were transmitted. Detailed documentation of survey responses is presented in Appendix B.

Presented below are the main points inquired about for each question, followed by the most commonly received responses for each question, listed in descending order of frequency.

- 1) Worst AWA problems affecting the respondent *as drivers* (2 worst per respondent)
 - Congestion, and that which occurs during morning and afternoon rush hours
 - Getting through intersections
 - Sharing the road with large trucks
- 2) Worst AWA problems affecting respondent's *business* (2 worst per respondent)
 - Congestion, and that which occurs during morning and afternoon rush hours
 - Rush hour deliveries and pickups
 - Turning radii for trucks
 - Lack of parking (unspecified re. for trucks, for workers, or for visitors/patrons)
- When businesses most use or most need to access to/from roads for shipments/deliveries
 - Mid-afternoon (1-4 PM)
 - Afternoon rush hours (4-6 PM)
 - Mid-morning (9AM 12 Noon)
 - Morning rush hours(7-9 AM)

[Eight time periods were provided for respondent to select two from]

- 4) Area roads most often used for business (3 blank fill-in lines provided)
 - NW 25th Street
 - NW 12th Street
 - NW 82nd Avenue
 - NW 36th/41st Street
 - NW 87th Avenue

5) Worst AWA intersections and roads segments (3 blank fill-in lines provided)

- Worst roadways (excluding expressways)
 - Segments of NW 36th/41st Street
 - o Segments of NW 25th Street
 - o Segments of NW 12th Street
 - o Segments of NW 87th Avenue
- Worst Intersections (excluding expressway interchanges)
 - o NW 25th Street & 82nd Avenue
 - o NW 12th Street & 87th Avenue
 - o NW 12th Street & 72nd Avenue
 - o NW 41st Street & 87th Avenue
 - o NW 25th Street & 87th Avenue
 - o NW 25th Street & 72nd Avenue
- 6) Transportation improvements most desired by respondents (3 blank fill-in lines provided)
 - Roadway/segment improvements to NW 12th Street
 - Roadway/segment improvements to NW 36th/41st Street
 - Roadway/segment improvements to NW 87th Avenue
 - Roadway/segment improvements to NW 72nd Avenue
- 7) Types of trucks used by, or coming to, respondents' businesses (10 types provided)
 - Delivery vans (including minivans and SUVs)
 - Medium straight trucks/panel vans
 - Tractors/semi-trailers
 - Light straight trucks./panel vans

- Main businesses conducted by respondents' firms (12 types and a fill-in blank provided)
 - Wholesaling
 - Freight forwarding
 - Local distribution
 - Warehousing
 - General Office

As noted above, all five non-fill-in-the-blank questions provided a choice of responses, for respondent selection. All inquiries but the times of trucking activity and truck type questions were backed with a blank fill-in line or an "other" line to assure exhaustion of responses. The majority of survey responses for Question 6 indicated a particular roadway segment as opposed to the facility in general, as well as specifying particular intersections.

Appendix A presents the survey form.

4.0 DATA COLLECTION AND ANALYSIS

4.1 Selection of Corridors and Intersections for Observation

Following collection of survey forms and compilation of generally qualitative response data, sites for further specific quantitative traffic data acquisition were selected in consultation with the SAC. Two corridors, one north-south, and one east-west, along with four intersections, were chosen for detailed traffic data collection.

<u>Corridors</u> -The two corridors selected were:

- NW 36th/41st Street –between the Turnpike (near 117th Ave) and NW 72nd Avenue
- NW 87th Avenue –between NW 12th Street and NW 58th Street

These two corridors were chosen because they are facilities that are well-traveled major arterials, and they are generally recognized as roadways currently experiencing significant traffic problems, and each was pointed out by survey respondents as streets in need of traffic relief. They have higher than typical truck volumes, and each is perhaps the major directional surface thoroughfare in the AWA for east-west travel and north-south movements, respectively. Perhaps most importantly, these two major arterial provide accessibility to the neighboring state highways for truck traffic within the study area.

NW 36th/41st Street is a main east-west corridor connecting Miami International Airport with the SR-826, Palmetto Expressway, itself one of Miami-Dade's heaviest general travel corridors as well as one of the County's major truck volume facilities. NW 36th/41st Street also continues west past SR 826, traversing the AWA until it reaches and accesses the Homestead Extension of the Florida Turnpike (HEFT). While it is a large facility, a six-lane divided highway with turn lanes at most major intersections; it carried approximately 77,500 vehicles per average weekday in 1999/2000 resulting in a typical Level of Service (LOS) of E (information based on data

obtained for the FDOT count station 1173). Currently, there is a ¹/₂-mile long segment immediately below to and centered about the SR 826 interchange overpass that remains a 4-lane roadway.

NW 87 Avenue is a north-south corridor connecting SR 836 (Dolphin Expressway) to the NW 36th/41st Street corridor. Between NW 12th Street and NW 36th/41st Streets, it is a six-lane divided roadway with turn lanes at the major intersections and multiple driveways for business entrances. North of NW 36th Street, to NW 58 Street, NW 87 Avenue is a four-lane roadway. Although outside of the study limits, it should also be noted that NW 87 Avenue is proposed to be extended from NW 58th Street north to Okeechobee Road, providing continuity for the northern parts of the western portions of Miami-Dade County. When completed, it will provide a continuous north-south thoroughfare about two miles west of SR 826, the Palmetto, and about 2 miles east of the Turnpike. Because it will be a main roadway paralleling two north-south expressways, it can be foreseen to become an even more important connector facility, carry high volumes of both car and truck traffic to connect to major east-west roadways that in turn connect to the expressway system.

Intersections- The four intersections selected were:

- NW 36th Street and NW 72nd Avenue
- NW 41st Street and NW 107th Avenue
- NW 12th Street and NW 87th Avenue
- NW 36th Street and NW 87th Avenue

These intersections represent important nodes in the Study Area. The first is the only selection east of the Palmetto Expressway, selected because, along with NW 25th Street, it is one of only two AWA roadways providing relatively convenient access to and from the Airport's cargo


rea's roadways. It is important to maintain throughput on truck routes to help assure area economic productivity.

The intersection of NW 107TH avenue and NW 41st Street was chosen because it not only experiences significant current traffic, but can be anticipated to carry even more in the future as development continues to intensify and growth occurs in currently un- or lightly-developed areas surrounding the site. Growth in the areas around the intersection will be mixed residential, mostly to the east, and commercial/industrial, mostly to the west. The resulting vehicle mixes anticipated to result from such growth lends urgency to prospective improvements considered, as both truckers and commuters need to meet schedules and combat increased travel times to maintain economic health and livability.

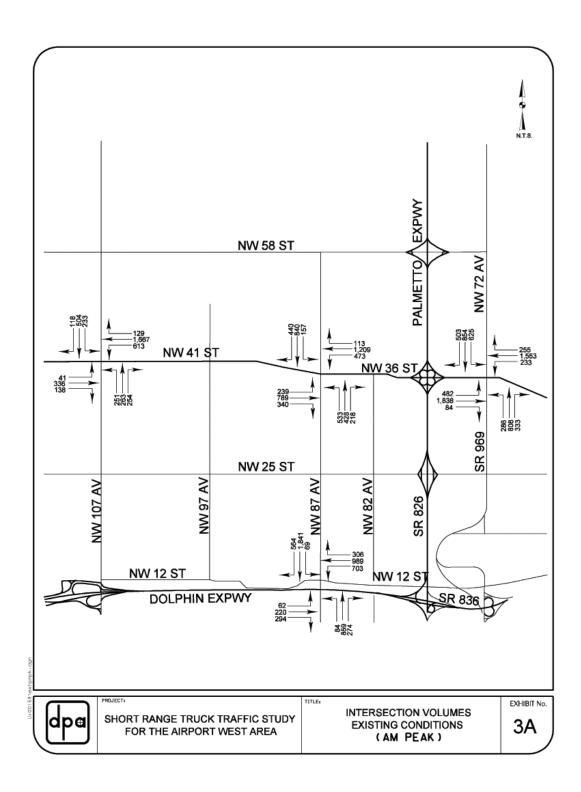
The intersection of NW 12th Street and NW 87th Avenue occurs at a complex interchange that connects SR 836 and NW 87th Avenue and a large, growing mixed consumer services and retail area immediately to the north, to retail and residential areas south of SR 836. Large numbers of private vehicles interspersed with a variety of truck traffic supplying the area businesses can be expected to continue, and interchange and intersection problems can be expected to worsen.

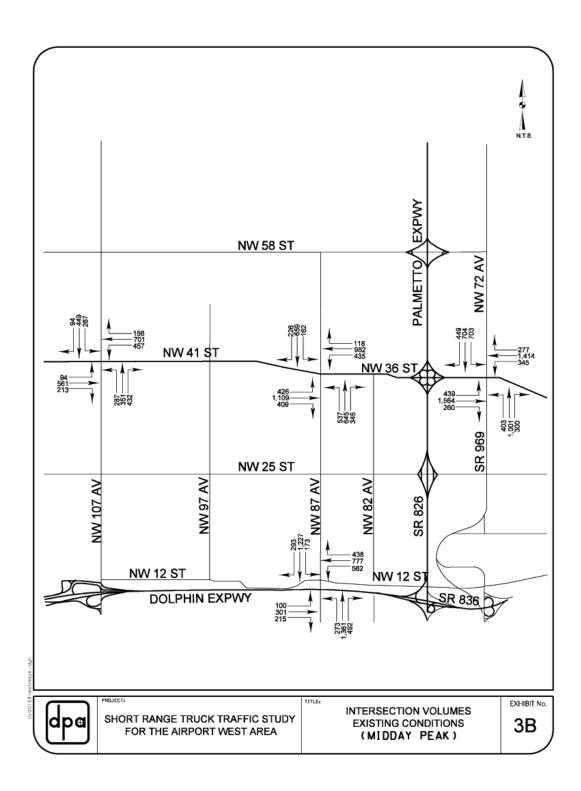
Finally, the intersection of NW 87th Avenue and NW 36th/41st Street allows travel between the arguably two most important "internal" AWA roadways. As noted previously, NW 87th Avenue connects heavy industrial uses in the NW 58th Street areas with commercial and resort uses between NW 58th and NW 36th/41st, with largely commercial and service uses south to NW 25th Street, and the consumer retail uses farther south along the corridor. But NW 36th/41st Street is the only east-west facility that connects with interchanges to both the Turnpike and the Palmetto, at either end of the Study Area. As such, the intersection becomes one of the prime nodes of AWA, and improving and maintaining throughput at the location will continue to be important. Exhibit 2 depicts the selected segments and intersections.

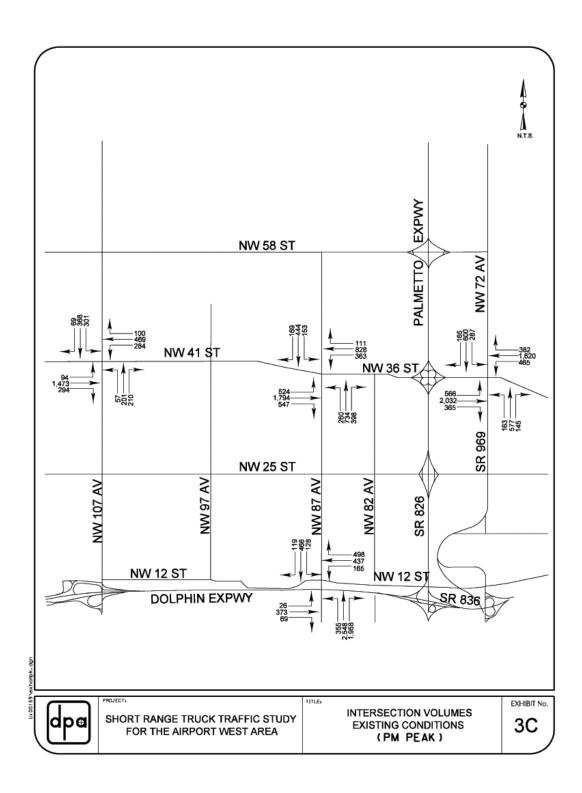
Airport West Area Short Range Truck Traffic Study

4.2 Traffic Counts

4.2.1 Intersection Counts and Volumes


For the four intersections selected for detailed analyses, single day turning movement counts were obtained between Thursday, July 12, 2001 and Thursday, July 19, 2001. The counts were taken from 8:00-9:00 AM, 1:00–2:00 PM and 4:00-5:00 PM for each location. The counts were adjusted by the standard FDOT Weekly Volume Factor.


Intersection volumes are shown in Exhibits 3 A, B, and C. Traffic count summaries and existing signal timing and phasing are also included in Appendix C.


4.2.2 Roadway Counts and Volumes

Roadway counts were determined from the AM, MIDDAY, and PM peak hour turning movement counts. The counts were taken for the two corridors selected for detailed analyses and these corridors were further divided into four segments.

Exhibit 4 depicts the two-way link capacity analysis for the corridors selected.

Street	Segment	AM Volume	LOS	MD Volume	LOS	PM Volume	LOS	Capacity @ "E"
	East of NW 72 Ave	4931	F	4603	Е	4837	Е	4810 (Class II)
NW 36	NW 72 Ave to Palmetto	4911	F	4529	С	4746	Е	4890 (Class I)
Street	Palmetto to NW 87 Ave	3647	D	3151	D	2959	D	4640 (non SR)
	NW 87 Ave to NW 107 Ave	3480	D	3132	D	3391	D	4640 (non SR)
	South of NW 12 St	5561	F	4130	D	4055	D	4810 (Class II)
NW 87 Avenue	NW 12 St to NW 25 St	3785	D	3592	D	3701	D	4640 (non SR)
	NW 25 St to NW 36 St	2746	С	3030	D	2832	D	4640 (non SR)
	North of NW 36 St	2135	D	2236	D	2217	D	3080 (non SR)

Exhibit 4 Two-Way Link Capacity Analysis

* Source: 1998 Level of Service Handbook

4.3 Existing Conditions Intersection Analysis

Following count compilation, existing conditions were established. Intersection level of service analyses were then conducted using Highway Capacity Software (HCS), based on the procedures of the *2000 Highway Capacity Manual* (HCM). The HCM defines six levels of service (LOS), with "A" representing the best operating conditions and LOS "F" representing the worst. Delay is the average travel time experienced by a driver to cross a particular intersection within the time interval being analyzed. HCS indicates the average delay in seconds per vehicle. Note that HCS does not indicate a LOS or a delay time when the volume over capacity ratios exceed 1.20. It should also be noted that for typically configured intersections, HCS generally indicates intersections operating at very poor levels of service.

The analyses are based on the existing lane configuration and traffic signal timing/phasing. Analysis results are summarized in Exhibit 5; analysis worksheets are also included in Appendix C.

INTERSECTION	LOS / DELAY (seconds/vehicle)				
INTERSECTION	AM	MID-DAY	РМ		
NW 36 Street /NW 72 Avenue	F (160)	*	F (341)		
NW 36 Street /NW 87 Avenue	F (458)	F (155)	F (109)		
NW 41 Street /NW 107 Avenue	F (125)	F (204)	F (448)		
NW 12 Street/NW 87 Avenue	*	*	*		

Exhibit 5 Existing Conditions Intersection Analysis

Source: DPA

* v/c and delay results are greater than HCS threshold (1.20).

The intersection analyses-were used to establish the existing capacity of the study intersections, the intersections' operational characteristics, and to identify problems and deficiencies. These were used as bases for developing possible corridor solutions later in the study. Note that the shortest wait time was 109 seconds, or about one and three-quarters minutes to make it through an intersection. More importantly, it should be noted that at a minimum, two minutes were needed in <u>all</u> other cases studied, and that depending upon the time of day and intersection selected, between about 5 minutes 40 seconds and 7 minutes and 40 seconds were needed to clear the intersections studied. Clearly, these numbers indicate the rather long delays experienced by drivers in the area; just as clearly, all intersections studied operated at failing levels of service.

Not so obvious, perhaps, is that delays like these affect our economy as well. Each delay adds costs to the transportation of materials, goods, and even services, as we are thus paying additional labor and operating costs, and travel charges, all accruing as trucks wait to get through stacked intersections and congested roadways. Rising costs decrease competitive advantages, so it behooves the County to seek ways to alleviate these excessive congested situations, especially in areas like Airport West, where many freight firms are located and trucking is a major way of life. Delays and congestion in truck-prevalent areas are frequently due to problems associated with trying to drive trucks on roadways ill-suited for their use. Developing approaches to reduce car-truck conflicts, and to ease truck movements in AWA can provide real benefits to not only the AWA itself, but to the greater Miami-Dade and South Florida community as well.

4.4 Planned and Programmed Improvements

The 2002 Miami-Dade County <u>Transportation Improvement Program</u> (TIP) was reviewed to identify programmed or planned significant roadway projects within the study limits of this project. Exhibit 6 lists the projects listed in the TIP scheduled for work within the next 5 years. In addition, the 2025 Long Range Plan was reviewed for future improvements, including projects which are expected to be developed over the next twenty-plus years arising from the cost-feasible Plan. Exhibit 7 lists the projects listed in the County's Long Range Plan.

Exhibit 6
2002 TIP Improvements

Location	Limits	Improvement		
NW 25 Street	NW 87 Ave to SR 826	Add lanes		
NW 25 Street	NW 82 Ave to NW 67 Ave	New viaduct		
NW 97 Avenue	NW 25 St to NW 41 St	2 to 4 lanes		

Interchange improvements are currently in design for the Palmetto Expressway interchange at NW 36th Street. The project proposes to replace the existing full cloverleaf interchange with a partial cloverleaf interchange type A. The northwest and southeast quadrants will have loop onramps with outer off-ramps taking the form of a diamond. This allows the vehicles exiting SR 836 to make a left turn onto NW 36th Street and eliminate existing weaving maneuvers. The design improves operations and reduces congestion by eliminating two weaves, and just as importantly, reduces personal vehicle-intimidating car-truck conflicts arising from such weaves at the interchange.

The Priority categories for these improvements are defined in the <u>2025 Long Range Plan</u> as follows:

- Priority I projects to be completed and opened by the Year 2010 to respond to the most pressing travel problems (projects listed in the 2002 TIP also fall under this category).
- Priority II projects where development efforts should commence before 2010 and construction to occur between 2010 and 2015.
- Priority III projects where development efforts should commence before 2015 and construction to occur between 2015 and 2020.
- Priority IV projects to be completed before the Year 2025.

Priority	Location	Limits	Improvement
I (by 2005)			Add lanes; Pavement reconstruction
II (2005-2010)	NW 107 Avenue	NW 41 St to NW 25 St	4 to 6 lanes
IV (by 2020) NW 87 Avenu		NW 36 St to NW 58 St	4 to 6 lanes
IV (by 2020)	NW 25 Street	NW 68 Ave to NW 77 Ave	Viaduct
IV (by 2020) Unfunded	NW 36/41 Street	NW 42 Ave to HEFT	Express Street

Exhibit 7	
2025 Long Range Plan Improvemen	ts

4.5 Corridor Field Observations

In order to fully comprehend existing conditions along NW 36 Street and NW 87 Avenue, these observations were collected. These two study corridors previously selected for further work were observed during the AM, MIDDAY, and PM peak periods. During these major daily traffic flow hours, the corridors were observed for operational characteristics, traffic patterns, truck volume, and to characterize the spacing between driveways. Following are selected observations of these "windshield" surveys.

NW 36th Street

- The peak direction is eastbound during the AM and westbound during the PM peak periods; there was no obvious peak direction during the main MIDDAY hour.
- Significant truck traffic was present during <u>all</u> periods.
- Signal spacing is approximately 2.5 signals per mile.
- Driveways appear to be adequately spaced to not overly impede flows.

NW 87th Avenue

- The peak direction is northbound during the AM and southbound during the PM peak periods; there was no obvious peak direction during the MIDDAY hour.
- Significant truck traffic was present during *all* periods.
- Signal spacing is approximately 4 signals per mile.
- Driveways appear to be adequately spaced to not overly impede flows

4.6 Intersection Field Observations

Existing conditions of all four study intersections were observed during the morning, midday and afternoon peak periods. As demonstrated in the intersection analysis, operations are heavy, and all four intersections experience high vehicle throughput volumes and subsequently experience long delays.

5.0 RECOMMENDED CORRIDOR IMPROVEMENTS

For this section of the report, general traffic improvement approaches are noted for both the specific intersections selected, and for the two arterial corridors chosen, as well as a number of general, area wide AWA transportation improvement suggestions. Trucking interests will benefit from these general improvements as well as personal vehicles. Some truck-specific enhancements are noted as well.

AWA transportation network and systems improvement recommendations presented in this report are based upon existing conditions as revealed through State and County data, consultant-collected data, and field observations. It would also be not only beneficial but prudent to perform a series of more detailed analyses throughout Airport West's network using estimates of future year traffic to capture growth and better allocate scarce resources to the most appropriate roadway segments and intersections to reap the maximum benefit from transportation infrastructure investments.

5.1 TRAFFIC OPERATIONS IMPROVEMENTS

A program should be developed to better manage traffic throughput, signalization, and accessibility of the two selected corridors and the four selected intersections to improve specific corridor and intersection capacity, reduce conflicts, and improve or at least ameliorate further degradation of travel speeds.

More generally, a detailed Airport West area wide operations analysis encompassing the AWA travel network of links (facilities) and nodes (intersections) should be conducted to develop an AWA package of mutually supportive improvements. In conjunction with minor capital improvements, these would be expected to maximize the benefits of operations improvements throughout the area:

A. Review and Adjust Signal Timing

A recommended improvement for the intersections specifically investigated is to adjust the timing of the signals controlling traffic flows through them. This will increase the intersection's level of service and reduce some delays. It will also contribute to improving throughput and reducing congestion and consequent delay along each of the intersection's corridors as well.

For example, at the intersection of NW 36th Street and NW 87th Avenue, a truly extraordinarily congested situation exists. The intersection experiences AM and PM peak LOS F, with average delays of 458 seconds during morning rush hours and 109 seconds during the afternoon peak. And testament to the incredibly high volumes of traffic occurring in many areas of Airport West throughout even the middle of the day, a midday delay of 155 seconds, also LOS F, occurs to congest travel and stymie traffic flow as well. By adjusting individual directional movements' component times and revising the multi-phased total cycle length, the intersection will still experience a LOS F, but the time delay will significantly decrease to 338 seconds. Indeed, reductions of 26%, 54%, and 34%, for AM, MIDDAY, and PM peak intersection delay can result from appropriate retiming of the signal. Please refer to Exhibit 8 for more information.

Peak Time	Existing Delay (seconds/vehicle)	* Future Delay (seconds/vehicle)	Difference	Percent Difference
AM	458	338	120	26%
MD	155	72	83	54%
PM	109	72	37	34%

Exhibit 8 NW 36 Street / NW 87 Avenue Directional Movement Adjustments

Note:* Future delays are due to adjusting individual directional movements' component times and revising the multi-phased total cycle length.

A secondary benefit results as well. By reducing delay time on an intersection, the proceeding intersections along a corridor will experience a less significant queue delay. See Exhibit 9 for the intersection analysis with recommended improvements.

Indeed, a review and analysis of all signals within the AWA would be beneficial, and by implementing timing changes, the entire area would be expected to see improvements in vehicle throughput and experience reduced intersection-induced delays. If the analysis and implementation of signalization-related improvements can be done in a coordinated fashion for all AWA intersections, the resulting signal synchronization would be expected to yield even greater overall, synergistic area-wide net traffic flow and congestion-reduction benefits.

INTERSECTION		EXISTING S TIMING DS (DELAY		WITH SIGNAL TIMING IMPROVEMENT LOS (DELAY) ¹		
	AM	MD	PM	AM	MID	РМ
NW 36 Street /NW 72 Avenue	F (160)	*	F (341)	F (155)	F (372)	F (334)
NW 36 Street /NW 87 Avenue	F (458)	F (155)	F (109)	F (338)	E (72)	E (72)
NW 41 Street /NW 107 Avenue	F (125)	F (204)	F (448)	E (64)	F (93)	E (66)
NW 12 Street/NW 87 Avenue	*	*	*	*	F (145)	F (230)

Exhibit 9 Intersection Analysis with Signal Timing Improvements

Source: DPA

¹ Delay in seconds/vehicle

* v/c and delay results are greater than HCS threshold (1.20).

B. Elimination or Relocation of Traffic Signals

The two corridors studied, NW 36th/41st Street (east-west) and NW 87th Avenue (northsouth), should be further evaluated in much greater detail to determine the need for maintaining all existing traffic signals in their current configurations.

There may be instances where signals may actually be contributing more to congestion rather than alleviating it, others where signals may be located apart from more heavily utilized roadway entry and/or crossing points, and others where, though signals may be needed to manage peak period flows, retiming for off-peak periods may result in better traffic flow and less congestion during midday, evening, and night times.

Ideally, similar analyses should be performed for all corridors within the AWA, and analogous to recommendations for signal timing adjustments, coordinated area-wide approaches would be expected to reap synergistic benefit beyond those achieved solely from site-and/or single corridor-specific improvements.

Guidelines should be developed which set requirements for continuing, periodic evaluation of existing traffic signals, and warrants and needs for installing new AWA signals, and incorporating heavy vehicle-friendly design elements, should be reviewed and possibly revised to meet the needs of the AWA transportation network.

C. Restricting Turning Movements and Reducing Median Openings

Prohibiting turning movements in some intersections (signalized or unsignalized), and revising the typical designs, along with reducing the frequency of median openings have demonstrated to reduce crashes and alleviate congestions.

Left turn maneuvers should be prohibited by construction medians or implementing "no left turn" signs through the study area. This will decrease congestion by minimizing the backup queues caused by shared through left lanes.

A median-opening restricting example would be the elimination of the more closely spaced median openings on NW 36 Street between SR 826 and NW 72 Avenue. The reevaluation of median openings should be completed with adjustments in left turn bay lengths to better accommodate all vehicles, but especially trucks, whose longer lengths will fill turn bays with fewer vehicles than will autos. This should only be completed after a thorough study of specific roadway segments and the movements associated with each turn bay and intersection are more intensively analyzed.

There is also some current research which indicates that implementing a U-turn bay, or possibly combining a U-turn capability and allowance in a left turn bay with appropriate upstream signal cycling (for proximal signals) can offer traffic flow improvements as well as some intersection relief.

5.2 Physical Improvements

Widening roadways is always an option to increase capacity, and at least temporarily, to improve vehicle throughput, reduce travel times, and relieve congestion. Both corridors studied would benefit from increasing the number of lanes of their respective facilities.

The addition of right turn lanes at high volume traffic intersections and/or driveways is another possible remedial solution; indeed, most physical improvement recommendations will be remedial retrofits. All the intersections selected for more detailed analysis would also benefit from intersection widening in that vehicle movements would be increased and delay significantly reduced; indeed, continuous right turn without stopping on red lights would appreciably alleviate

delay and greatly reduce queues at the most congested. A number of entrances to some of the larger commercial developments can be improved by adding right turn lanes leading to the driveways providing access to the properties, removing slowing and nearly stopped vehicles from the main arterial's travel lanes.

The construction of acceleration/deceleration lanes is another improvement that should also be considered. This is especially beneficial to heavy trucks, which frequently must enter traffic streams at low speeds, thus impeding following platoons of vehicles and introducing or adding to congestion on a facility. One example of a suggested physical improvement that would be beneficial for truck movement is the scheduled interchange improvements for SR 826 at NW 36 Street. These improvements will help relieve truck weaving, particularly because this is one of the problem areas identified in the survey and field verified.

Unfortunately, the combination of a general lack of right-of-way along many corridors and at many intersections in the AWA and the high cost of acquiring it where there remains some land available for purchase, in concert with consequent possible to probable reduction in sidewalk widths and pedestrian amenities, largely precludes adding turning lanes along the study corridors because it is counter-multi-modal, and more importantly, generally not financially feasible.

Nonetheless, it is strongly recommended that any new developments within the study area should incorporate the design standards and criteria described in greater detail in Section 6.0. These include revised specifications for driveway widths and turning radii to allow improved throughput of truck traffic, and the reservation of maximum ROW cross-sections whenever and wherever possible.

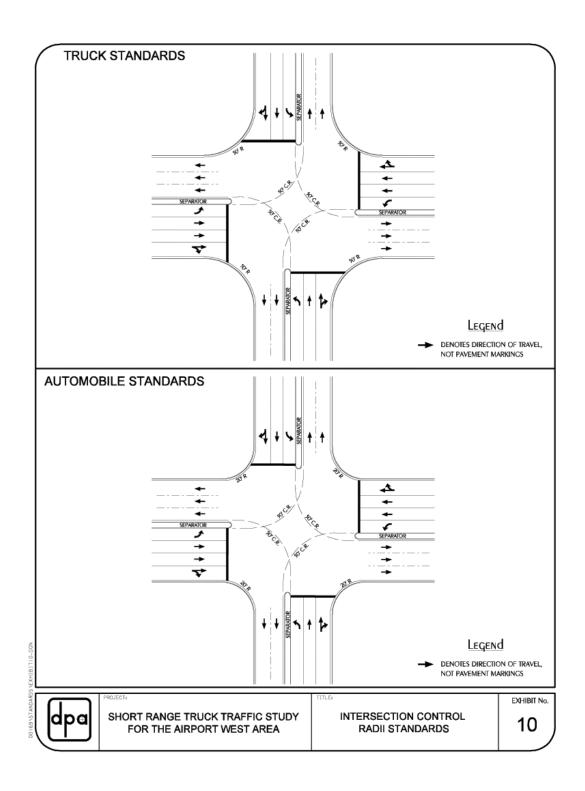
5.3 Intelligent Transportation System (ITS) Improvements

Intelligent Transportation Systems (ITS) is a Federal level organization that became official when Congress, in 1991, recognizing the critical need to address our aging transportation network and its pressing challenges, adopted the ITS program. It represents the next step in the evolution of the nation's entire transportation system. ITS can be applied to our vast transportation infrastructure of highways, streets, and bridges, as well as to a growing number of vehicles, including cars, buses, trucks, and trains. These information and communications technologies can also be used to better manage and improve how transportation providers such as governments, transit agencies and truckers offer services to the public.

ITS can provide a means of applying innovative solutions to chronic problems that are difficult to resolve with traditional capital improvement or operations improvement methods. Researchers in Texas have developed a system that detects a truck approaching an intersection which relays signal to a computer using a vehicle classifier. The computer in turn sends a message to the signal controller at the signalized intersection ahead of the truck to take appropriate action, such as delaying a light change from green to red to give the truck time to clear the intersection safely. The researchers found inductive loops connected to a classifier very accurate in detecting and classifying trucks and measuring their speeds, input vital for the success of such a system.

It can be conceived that on intersecting streets with maximal ROW constraints, tight turning radii on 90° intersection facilities, and even generally light traffic loads, heavy trucks and especially tractor-trailers, would experience problems negotiating right turns. In many cases, roadway cross-sections will force drivers to turn wide, and in many instances, bring their cabs into the opposing traffic lanes to negotiate the turn without having the rear of the vehicle climb the curb and run over the sidewalk. If an additional traffic signal were placed perhaps 50' farther away from the intersection, an oncoming truck making a right turn might be detected as above, triggering the second light to go red while the intersection light remains green long enough to

clear the opposing traffic queue. Then the driver could much more easily and safely veer into the opposing traffic lane to successfully make the turn. Dual benefits might be realized from such an arrangement. First, truck travel would be enhanced. Second, because the truck would no longer be threatening oncoming traffic, nor delaying traffic behind it, nor blocking an intersection waiting for other traffic to clear, traffic flows would tend to be improved as well.


Potential ITS alternatives such as those described above, should be explored and considered to improve personal vehicles, small commercial vehicles, and heavy truck operations in the study corridors and segments within the AWA. While the effectiveness of some of these ITS solutions may be limited during heavy congestion periods, they may produce satisfactory results during off-peak hours. Minimizing the number of stopped or delayed trucks not only lowers traffic delay but also improves safety. And when truck travel patterns are better facilitated by making improvements, including ITS improvements, where trucks most frequently travel or where planners and the industry deem most appropriate, facilities in general, and in particular, pavements, can be remedially strengthened or initially constructed or periodically reconstructed to more demanding specifications to better endure wear and reduce maintenance costs.

6.0 DEVELOPMENT OF REVISED DESIGN STANDARDS

The purpose of design standards is to state general rules for the design of highways and streets. Primarily defining the guidelines designers use for roadway design, along with stating the design requirements. Standards assist in the administration and planning of design formulations. However, one set of standards does not fit all types of designs and as a result, with time, different organization, such as Institute of Transportation Engineers (ITE) and American Association of State Highway and Transportation Officials (AASHTO), have developed standards to meet a series of varying circumstances.

Design standards are updated on a regular basis due to the fact that traffic conditions and design requirements change with time, yet the fact that new design values are presented does not imply that all existing streets and highways are unsafe. In order to determine if any particular area is no longer functioning in a satisfactory manner site investigations and crash histories are analyzed. Such an approach was taken in the AWA area, which resulted in the conclusion that the area is no longer satisfactory due to the increase volume of truck traffic. The design standards that were first applied in the designing of the roadway and intersection cross-sections were initially adequate, however, with time they have become insufficient to deal with the current truck movements in the area.

The exhibits included in Appendix D are a compilation of standards given by ASSHTO. These can be considered suggested standards for traffic design for the roadways in the AWA. The exhibits include typical roadway segments and intersections, typical turn lane requirements, driveway spacing, and types of access to driveways, and cul-de-sacs. These cover most instances of roadway redesign that might be implemented on study area roads and access ways to improve on-street, access to property, and egress from property truck maneuverability issues.

Specific Design Recommendations:

Based on the suggested adjusted standards, room for six-foot paved shoulders are to be incorporated into ROW purchases, integrated into initial future roadway designs, and subsequently constructed on all two-lane, two-way roadways. This feature was developed to provide for emergency stopping only. Emergency stopping on the four-lane and six-lane roadways can be accommodated within the 14-foot curb lane, while still maintaining at least one travel lane open to traffic.

During roadway design phases of highway projects, typical roadway sections do not show location of landscaping, utility corridor(s), or sidewalk(s). The designer should be responsible for the verification of the conditions and requirements for the areas adjacent to the project under design. The minimum width of sidewalks should be 6 feet. The designer should be responsible for complying with Americans with Disability Act (ADA) requirements as well. The roadway system is strongly recommended to be designed without on-street parking. If adequate off-street parking cannot be provided, special 22.5 degree angle parking and recessed parallel parking standards may be utilized for on-street parking design on slower speed, lower traffic classes of streets

A design review process should be implemented to a) recommendations forwarded here be incorporated in to the design criteria used by local city, county, and state agencies for both initial design and retrofit designs, and b) ensure that the absolute minimum requirements for pedestrians and ADA amenities are provided, to make the best use of the roadway. This step should take place especially in areas recognized as vehicle/truck oriented. Taking this approach will maximize vehicle movements and improve congestion while still providing some minima for the infrequent but far more safety-vulnerable non-motorized modes to travel in the immediate vicinity of these high truck volume facilities.

All roadway pavement markings and roadside traffic signs should at a minimum comply with the Manual on Uniform Traffic Control Devices (MUCTD) for Streets and Highways and the Miami-Dade County Public Works Department standards and details for traffic control. All suggested standards are based on criteria in publications by the Miami-Dade County Public Works Department, FDOT, and the American Association of State Highway and Transportation Officials (AASHTO). It is especially important to assure large and heavy truck clearance in both horizontal and vertical dimensions with respect to signals and street signs, both for trucks traveling along the roadways, and for clearances at turning points at intersections and driveways.

7.0 TRANSFERABLE SOLUTIONS

While roadways are generically designed to handle typical mixes of vehicles types, not all vehicles have the same effect on traffic flow. Large trucks, as we know, adversely affect roadway capacity because of their size, their limitations to accelerate, decelerate and maintain speed on grades, and their often extraordinary turning radius requirements. As we have seen, truck traffic percentages of total traffic carried on AWA roads is higher than typical streets, and generic roadway design has been inadequate to handle many situations in the AWA precisely because trucks are so relatively prevalent. The design standards recommended in Section 5 of this report will certainly improve the traffic operations of the study area if and when implemented.

However, as already noted, the continuing growth of AWA, resulting in the now heavily built-up nature of much of the area, provides only limited opportunities for the expansion of the rights-ofway needed to apply the recommended, revised standards and to implement some of the recommended improvements.

This section recommends methods and treatments that will also help alleviate congestion in the AWA. Some of the solutions focus on reducing the number of *passenger* cars using the network during peak period as opposed to accommodating trucks through design, etc. The County's Mobility Management Process (MMP) report prepared by the Miami-Dade MPO was used as a source for some of the recommended solutions. The MMP approaches are classified as short-term and long term, cross-referenced by type of approach, and several recommended applications are presented for each.

Short Term Solutions

Physical Improvements:

- * <u>Intersection Improvements</u> a series of treatments directed towards improving traffic flow at intersections:
 - Traffic signs
 - Changes in geometric design
 - Turning lanes
 - Acceleration/Deceleration lanes
 - Traffic islands
 - Grade separation

Operational Improvements:

- * Elimination and Relocation of Traffic Signals evaluate traffic signal operation by corridor to determine the need of existing signals
- * <u>Restriction on Turning Movements</u> prohibiting turning movements in some intersections thereby eliminating conflicts
- * <u>Access Management</u> this program is directed to manage accessibility to arterials in order to improve average travel speed and capacity
- Incident Management this program monitor traffic flow and detect incidents and crashes along the roadway network
- <u>Signal Re-timing</u> improvements to signalized intersections by revising the signal phases.

Travel Behavior Change Improvements:

- <u>Ridesharing</u> a vehicle shared by several person for trips to and from work; implement additional carpools and/or vanpools from employers or groups of employers in the AWA
- * <u>Shuttle Service</u> bus or van service that provides transportation between the company's site to a transportation facility. The "*Miami Service Shuttle Report*" prepared by the MPO made recommendations for implementing a shuttle system servicing the Airport West Area.
- Preferential Parking employers provide preferential parking spaces and treatments for car pool and vanpool vehicles –for example, reduced rates and/or providing spaces nearer to building access points or elevators in garages
- * <u>Alternative Work Hours</u> this solution spreads the demand for travel at peak periods by allowing or even encouraging workers to begin and leave early before the worst of rush hour traffic, or begin and end later, or even by working 4/10 hour days and not commuting altogether one day a week.
- * <u>**Telecommuting**</u> employees are allowed to work from home, or a closer-tohome specially-equipped remote site using computers and phone lines

Long Term Solutions

* <u>Road Building/Extension</u> – fundamental method for adding transportation system connectivity and capacity; normally applied as first course of action over the past century throughout the US and the world; while system attributes may be enhanced, this approach virtually always serves to open new areas to either new development of more intense development, and eventually acts as a catalyst for adding traffic to roadway systems.

- * <u>Road Widening</u> traditional largely uncontroversial method normally applied to improve capacity and vehicle throughput where right-of-way availability permits; improves traffic flow by increasing the width of an existing lane or by adding new lanes. The Long Range Transportation Plan (LRTP) lists the following road widening project within the study limits:
 - Widen NW 58 Street from NW 102 Avenue to NW 107 Avenue from 4 to 6 lanes
 - Widen NW 87 Avenue from NW 36 Street to 58 Street from 4 to 6 lanes
 - Widen NW 107 Avenue from NW 41 Street to 25 Street from 4 to 6 lanes
 - Widen NW 36/41 Street from NW 42 Avenue to HEFT from 4 to 6 lanes
 - New express street, also known as a "super arterial", to include select intersection and segment grade separations, coalescing of driveway openings, reduced side street access points, and ITS improvements. Super arterials provide higher levels of service and greater throughput superior to that of normal, equivalentlysized roadways through synergistic combinations of design, separation, and operational elements augmented by the new technology advances of Intelligent Transportation Systems applications.

Operational Improvements:

- * Institute programs of expanded regular periodic traffic counting throughout the AWA, and follow up with expanded, regular programs of signal retiming
- * Implement a computer-driven traffic counting and signal synchronization optimization program for application to signalized AWA intersections

Travel Behavior Change Improvements:

 Develop and implement an Airport West Trip Reduction Ordinance (TRO). TRO's revised commuting approaches that constrain the use of single occupant vehicles in certain areas at certain times.

All these physical, operational, or behavior change treatments and approaches implemented over both the short-term and the long-term will multiply serve to facilitate truck movements in the AWA either by directly addressing truck issues, or by addressing the larger, overall area traffic issues which complicate and impede track travel in this increasingly congested area. The best programs will as aggressively as feasible seek to improve truck maneuverability while concomitantly reduce general roadway traffic loads to synergistically improve travel for all in the AWA.

8.0 DEVELOPMENT OF IMPLEMENTATION PLAN

An increase in capacity of the corridors and intersections within the AWA may be achieved by implementing the following recommendations:

- Revising design standards
- Traffic operation improvements, and
- ITS improvements.

The implementation of these recommendations can also lead to fewer number of crashes and an improvement in truck mobility, movements, and maneuverability.

8.1 Implementation Plan

The proposed implementation plan is divided into two tiers. The first tier deals with specific corridor improvements and the second tier with area-wide improvements.

Corridor Improvements

A corridor is defined as a set of essentially parallel transportation facility that serves trips between two designated points. Corridors within the AWA should be evaluated individually based on the following criteria:

- Truck Traffic and Freight Movement The extent of the road segment and / or corridor's use by truck traffic.
- Congestion The extent of congestion during the following periods of the day as measured by actual or estimates LOS: AM Commute Peak, Mid-Morning, Midday Lunch Peak, Mid-Afternoon, PM Commute Peak, Evening Period, Overnight
- **Connectivity** The importance of the corridor and its connection between locations.

- Safety Number of crashes over the past 5 years. Percent of crashes involving trucks. Types of crashes. Crash trend over the past 5 period.
- Availability of Right-of-Way –The presence and width of a right-of-way available to implement some of the recommended physical design standards; opportunity for right-of-way dedication from future developments.

Corridors that qualify for improvements should next be prioritized prior to detailed evaluation. Priority should be given to corridors that have high percentage of trucks and provide connectivity between two important locations. The next priority should be given to corridors that have a congestion problem. The improvements should then be categorized to find the most cost effective way to plan, design and construct the improvements. Once the improvements are categorized, a source of funding must be identified.

Intersection Improvements

All corridors within the AWA should be evaluated individually based on the following criteria:

• Area-wide Improvements - Area-wide improvements such as the design standards recommended in Section 6, should be prioritized by the AWTMI in conjunction with the MPO. As with the corridor improvements, area-wide improvements must be categorized and a source of funding identified.

8.2 Funding

In an era of lowered transportation-dedicated revenues and more constrained spending, funding is an absolutely critical element to consider even before implementing any transportation improvement project. There are limited funds for developing and implementing projects, and there is therefore a need to determine which improvements are most cost effective and should receive higher priority. Possible sources of funds include:

- <u>Federal funds</u> In addition to the more regular disbursements of formula-based and Surface Transportation regular highway funding to state and local agencies, the Federal Highway Administration (FHWA) provides funds for demonstration projects, such as congestion relief, rural and urban access projects, multimodal transportation projects and innovative projects using advanced technologies.
- <u>State funds</u> funds can be used for a variety of transportation improvement projects and the funds are generally obtained from four sources:
 - Federal-aid programs
 - State gasoline taxes
 - Revenue bonds and
 - State-legislated appropriations from general funds or special earmarked funds.
- <u>Local funds</u> funds come from bond sales, state gas tax or real-estate property tax and can be used for a variety of transportation projects. However, the needs so exceed the funding available to meet those needs that all but "emergency" distributions are already allocated. To tap into these

monies, projects will in virtually all cases need to be promoted from this process to "regular" funding channels, if that is indeed possible.

• **Dedicated revenue funds** – such as an assessment, tax or fee where the funds are targeted for a specific transportation project. The affected property owners in return for benefits to their property incur the cost. Dedicated funds are found throughout Washington's budget. State and local governments collect taxes and fees for specific purposes and deposits the revenue into the dedicated funds. The money is then spent on designated programs, such as improving local neighborhood lighting or sidewalk repairs. An example of a common strategy to support public transit is to use a local tax, say 1/10 of a percent sales tax, in which the funds go directly to provide transit services. In recent years transit taxes have been approved by voters in Detroit, Michigan, Charlotte, N.C., and Seattle, Washington.

Short-term improvements may be able to be advanced by the use of FDOT's Push Button contracts or following the procedure outlined in the Low Cost Improvement Program for Resourceful Use of Streets and Highway (RUSH). FDOT Push Button contracts apply mainly to corridors or locations that are experiencing safety problems. The Miami Dade County Long-Range Transportation Plan, the LRTP, is the main vehicle for the most significant and costly capital improvements to be nominated, evaluated, selected, and prioritized for implementation. The Transportation Improvement Program (TIP), the 5-year horizon program of projects in phases of actual implementation, most usually brings projects to fruition after they advance from later stages of earlier LRTPs into its first 5-year section, generally congruent with the TIP. These two mainly MPO activities, along with the FDOT Work Program, will be the main mechanisms to initiate the implementation of long-term improvements.

As stated by MPO, it is generally difficult to attain funding for all but "the most critical of projects." Also the various criteria and benchmarks used to ID potential AWA Interstate Maintenance / rehabilitation and freight movement projects need to cover many opportunities for improvements. However, in order for projects to have a chance at attracting funds, the most pressing needs should be selected and promoted at the top of the list, as well as the reason for the selection of these needs. As previously noted, most existing sources for funds have already been allocated as a result of the fact that transportation improvement funding needs far exceed the means available to fund them.

MPO, also comments on earmarking at both the State and Federal levels for local projects. This is another source of funding, for some projects it is neither more nor less probable to obtain funds in this matter than it is from other sources of funding. Most earmarked projects arise from genuine community needs that have been backed by strong community activism and involvement.

9.0 CONCLUSION

The Airport West Area is a rapidly growing industrial area located in Miami-Dade County. The Airport West Transportation Management Initiative (AWTMI), characterized by a large number of trucking companies, provides services to the Miami International Airport (MIA). Due to the growing demand placed by a heavy truck volume within a bounded region, the Airport West Area is not able to accommodate the needs of truck traffic. As a result, this area experiences a high percentage of heavy truck traffic throughout the day.

In order to address the needs and concerns of the trucking community within the study area, a limited and focused survey questionnaire was sent out to truck drivers and businesses. After all the information was gathered and the surveys responses received were accounted for, two corridors were selected for further analysis, NW 41/36 Street between Florida's Turnpike and NW 72 Avenue and NW 87 Avenue between NW 12 Street and NW 58 Street. Within these two corridors, four intersections were chosen for detailed observations NW 36 Street/NW 72 Avenue, NW 41 Street/NW 107 Avenue, and NW 12 Street/NW 87 Avenue.

Information regarding these two corridors and the four intersection were complied. The research consisted of traffic volumes, LOS, truck volumes, accident records involving trucks, assumptions of growth and business development, and recommendations produced in previous studies. The intersection analysis was used to establish the existing capacity and operations of the study intersections as well as identify problems and deficiencies. This was used as a basis for possible corridor solutions.

An immediate improvement to the corridor traffic congestion is adjusting signal timing, eliminating or relocating traffic signals, and placing restrictions on median openings and turning

movements. These changes will improve the LOS and time delay experienced at an intersection. Physical improvements such as the addition of right turn lanes at high traffic intersections and/or driveways may provide another remedial solution. However, the heavily built-up nature of the area provides only limited opportunities for the expansion of the right-of-way needed to implement some these solutions.

Transferable solutions, such as ridesharing, shuttle service, telecommuniting, road widening, and the development of a super arterial are a couple of examples that may be implemented to alleviate the congestion in the AWA. Some of the solutions focus on reducing the number of passenger cars using the network during peak period as opposed to reducing or eliminating trucks.

As part of this study, specific design standards were developed to better accommodate the heavy truck traffic in the Airport West Area. It is recommended, that when designing future improvements in the AWA, these design standards be implemented. These standards could be established as a demonstration project for further evaluation. The implementation of these design standards should be coordinated with FDOT, MDCPWD, and AWTMI.

 $W:\label{eq:word} W:\label{eq:word} W:\label{e$

Appendix A

Sample Survey

Thank you for participating in this survey. The Miami-Dade MPO conducts transportation planning for Miami-Dade County. As part of our efforts, we need to know how, where, and when people travel, and how, when, and where freight moves by truck, so we can prepare better, more informed plans that are more responsive to people's needs.

We have joined with South Florida Commuter Services and the AWTMI to gather some travel information for the Airport West area, and to develop ways to better handle traffic, and in particular, truck traffic, in this rapidly growing and increasingly economically important area.

Thank you for your assistance.

TRANSPORTAION INFORMATION

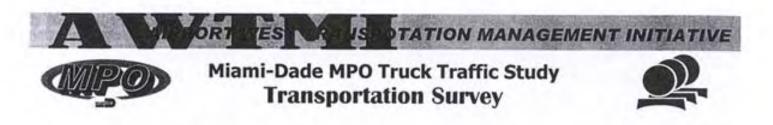
1 - The main business conducted by your firm is:

[] Local distribution

- [] Retail [] Restaurant
- []LTL [] Truckload
- Wholesale

[] Trade Services (Electrical, Plumbing, etc.) [] Business Services (RE, Banking, Legal, etc.) [] Entertainment [] Other Services (Hair Salon, Photography, etc.) [] Warehousing [] Manufacturing

[] Other


2- The 2 worst Airport West area problems you feel affect you as a driver:

[] Congestion: () Morning/Arriving () Midday/Noon () Afternoon/Leaving () Evening () Night [] Lack of **Parking** for cars [] Getting through **intersections** (i.e., long backups, long waits) [] **Road conditions** (Physical) [] Sharing the road with **large trucks** [] Road conditions (Physical) [] Other

3- The 2 worst Airport West area problems you feel affect your business.

[] Congestion () Morning () Midday/Noon () Afternoon/Leaving Work () Evening () Night [] Turning Radius for Trucks () At driveways () At intersections Rush hour deliveries to/Pickups from your business [] Lack of Parking () For trucks () For workers () For patrons and visitors to businesses Other 4- When does your business most use or most need to have access available to and from roadways (for shipments or deliveries)? (Please chose only two) [] Morning Rush Hours: 7-9 AM [] Mid-Morning: 9 AM- 12 Noon [] Early Morning: 5-7 AM [] Lunchtime [] Afternoon Rush Hours 4-6 PM [] Mid-Afternoon (1-4 PM) [] Evening (6-11 PM) Overnight (11 PM – 5 AM next day) 5- What area roads does your business typically most often use to conduct business? 1 3

2

NOTE: To identify road segments in the following questions,, please give approximate address, cross streets, or landmarks for location, and please limit the segment to about a 1/2 mile length or less.

intersection or road segments present the greatest Airport West an	ea problems?
3 area transportation improvements would you most like to see?	

8- What types of trucks does your business use or get pickups/deliveries by?

- [] Delivery Vans (& Minivans, SUVs)
- [] Straight Flatbeds
- [] Straight Reefers
- [] Tractors and Semi-Trailers-Single
- [] Reefers Semis

[] Light Straight Trucks/Panel Vans (4 wheels)
 [] Medium Straight Trucks/Panel Vans (6 wheels)
 [] Heavy Straight Trucks/Panel Vans (8+ wheels)

[] Tractors and Semi-Trailers – Doubles [] Tankers - Semis

THANK YOU!

We will report the results in the MPO's Airport West Truck Traffic Study, and incorporate the findings in developing recommendations for improvements.

USER CONTACT INFORM This information is OPTIONAL, but			
Name:	Title:		
Company:			
Address:	Email:		
May we call for follow up? [] Yes – Telephone: 305	-	
[] No, please don't ask me for more	information	

Appendix B

Summary of Survey Responses

м	iami-Dade Metropolita Traffic Study for the	n Planning Organizatio e Airport West Area	'n	DPA #00169 15-May-01
Tran	sportation Surve	ey Results Sumr	nary	
				58 Surveys Summarized
1 - The worst Airport We	est area problems you	feel affect you as a driv	ver.	
55 Congestion:	38 AM Rush Hr	11 Noon	39 PM Rush Hr	12 Evening
3 Lack of parking for c	cars			
30 Getting through inte	rsections (i.e., long back	ups, long waits)		
3 Road conditions (ph	ysical)			
12 Sharing the road wit	h large trucks			
3 Other:	1 Ignorant drivers	who block cross-roads w	vhen stopped	
	1 Every road has c (too many cars, r	construction or buildings not enough road)	being constructed	
	1 Gridlock created	by slow traffic in fast lan	nes	
2 - The worst Airport We	est area problems you	feel affect your busine	SS.	
52 Congestion:	27 AM Rush Hr	15 Noon	37 PM Rush Hr	2 Evening
11 Turning radius for tr	ucks:	6 At driveways	5 At intersections	
19 Rush hour deliveries	s to/pickups from your bu	usiness		
10 Lack of parking:	2 For trucks	4 For workers	5 For patrons/visi	tors to business
3 Other:	1 Midday trains @	NW 82 Avenue		
	1 Truck congestior	n problems on NW 8 Stre	eet at 7200 - 7300 Block	
	1 Trucks blocking	entrance to parking lots		

3 - When does your business most use or most need to have access to and from area roadways? 3 Early AM 18 AM Rush Hr 23 Mid-AM 3 Lunchtime (5 - 7 AM) (7 - 9 AM) (9 AM - noon) 30 Mid-PM 28 PM Rush Hr Evening Overnight (1 - 4 PM) (4 - 6 PM) (6 - 11 PM) (11PM - 5 AM) 4 - Which area roads does your business typically use/have used? NW 7 Street 1 9 SR836 4 bet NW 87 Avenue & NW 57 Avenue 23 NW 12 Street 10 bet NW 107 Avenue & NW 72 Avenue Perimeter Road 2 NW 14 Street bet NW 87 Avenue & NW 79 Avenue 2 1 36 NW 25 Street 15 bet Turnpike & MIA NW 33 Street 1 13 NW 41/36 Street 7 bet Turnpike & NW 72 Avenue NW 58 Street bet NW 87 Avenue & NW 72 Avenue 3 1 NW 107 Avenue 3 1 bet SR836 & NW 25 Street NW 97 Avenue bet NW 12 Street & NW 41 Street 3 1 12 NW 87 Avenue bet NW 12 Street & NW 58 Street 3 16 NW 82 Avenue bet NW 12 Street & NW 36 Street 7 5 NW 79 Avenue 3 bet NW 25 Street & NW 58 Street 5 NW 78 Avenue 2 bet NW 12 Street & NW 15 Street SR826 11 NW 75 Avenue 1

NW 74 Avenue 1 6 NW 72 Avenue 3 bet NW 12 Street & NW 58 Street 5 - What intersections/road segments present the greatest Airport West area problems? 4 SR836 3 SR836 & NW 87 Ave 1 west from MIA to SR826 north 1 red phase takes too long 1 merge w/traffic from SR826 9 NW 12 St & NW 87 Ave N & S & NW 72 Ave 6 NW 12 St 4 NW 12 St & NW 82 Ave 1 PM rush hr 1 NW 12 St & NW 78 Ave 3 bet NW 87 Ave & NW 72 Ave 1 NW 14 St 7 NW 12 St & NW 72 Ave 1 bet NW 87 Ave & NW 79 Ave 2 turning north to NW 72 Ave 1 west of NW 87 Ave going east 1 NW 12 St & NW 70 Ave 13 NW 25 St 3 bet Turnpike & NW 72 Ave NW 12 St & North 6 bet NW 87 Ave & MIA 1 NW 25 St & NW 107 Ave 1 WB from SR826 (most of the day) 5 NW 25 St & NW 87 Ave 14 NW 41/36 St 2 towards the Turnpike 12 NW 25 St & NW 82 Ave 3 bet Turnpike & SR826 3 NW 25 St & NW 79 Ave 7 bet NW 107 Ave & NW 72 Ave 14 NW 25 St & SR826 1 all traffic east/west in AM & PM 2 NW 25 St & NW 75 Ave 1 NW 58 St 1 west of SR826 5 NW 25 St& NW 72 Ave 1 NW 74 St 1 west of SR826 1 NW 33 St & NW 87 Ave

6 - What area transportation improvements would you most like to see?

7 SR826	1 widen
	2 improved entrance/exit ramps
7 SR826 & NW 25 St	1 complete interchange project
	1 adjust signal timing on east side of SR826
	1 signal is not properly synchronized going east
	1 longer green phase for traffic turning north
2 SR826 & NW 58 St	1 complete interchange project
1 SR826 & NW 74 St	
3 SR836	1 merge w/traffic from SR826 N & S & NW 72 Ave
	1 improved entrance/exit ramps
1 SR836 & NW 87 Ave	1 reduce congestion at interchange
1 SR836 east with SR826 north	
1 SR826 north intersecting SR836 east	
4 Turnpike	1 bet Dolphin Mall & the toll
	1 merge lanes to ramp
	1 improved entrance/exit ramps
	1 entrance ramps at NW 58 St
10 NW 12 St	7 bet NW 87 Ave & NW 72 Ave
	1 widen northbound turn lanes
	1 longer green phase for traffic going east in PM
1 Perimeter Road	1 widening

7 - What types of trucks does your business use or come to your business regularly?

40 Delivery vans, miniva	ns, SUVs	6 Other:	1 Cars
20 Tractors, Semi-Traile	rs-Single		1 Pick-ups
20 Light Straight Trucks/	Panel Vans (4 wheels)		1 Containers
21 Medium Straight Truc	cks/Panel Vans (6 wheels)		1 Small station wagons/escorts
14 Heavy Straight Truck	s/Panel Vans (8+ wheels)		
8 - The main business c	onducted by your firm is:		
9 Local distribution	2 Retail	Trade Services (E	Electrical, Plumbing, Painting, etc.)
4 LTL	20 Wholesale	6 General Office (R	eal Estate, Banking, Legal, etc.)
2 Truckload	7 Warehousing	1 Restaurant	
11 Freight Forwarding	3 Manufacturing	Entertainment	
13 Other:	1 Government Services	1 Delivery of	mail service - US Postal Service
	1 Military Operations	1 Express Co	burier
	3 Law Enforcement	1 Pick-up/del	ivery of computer work
	1 General Contractor	1 Export - he	avy equipment
	1 Transportation	1 Flower Imp	orter
	1 Religious Cemetery		

Appendix C

Existing Traffic Volumes

Traffic Counts Signal Phasing & Timing HCS Worksheets **Traffic Counts**

					TUR	2NI	NG	i M	IOVF	M	ΕΝΤ	- C	OUN		5			
	1																	
	Proje Name				ort Ra Ick Tra	-							Proje Numb				00169	
	Num	/ •			/ 36 St													
	Locat	tion:			736 SI 772 Av								Coun	t Da	ate:		07/12/01	
	Obse	rver:		Eng	ecisior gineer rveyin	ing							Day o Week			 1	hursday	
					V 72 A								NW 36		DEE	 T	<u> </u>	
т	IME		ORTH								EAST			51			DUND	GRANI
					TOTAL				TOTAL		T		TOTAL			R	TOTAL	TOTAL
8:00	8:15																	
AM	AM	45	150	24	219	77	143	24	244	125	508	76	709	99	397	85	581	1,753
8:15 AM	8:30 AM	53	156	40	249	90	149	27	266	124	428	81	633	113	425	95	633	1,781
8:30	8:45																	
AM	AM	35	119	31	185	48	158	55	261	120	528	120	768	112	475	108	695	1,909
8:45 AM	9:00 AM	28	146	49	223	69	144	57	270	191	548	84	823	136	307	90	533	1,849
							T											
		/	-111			-				-						АК	<u>I</u>	
		NW 72 AVE										NW 36	ST					
									-	<u> </u>	EAST							GRAN
IN I E 8:00	ERVAL 9:00	L	T		TOTAL	L	T		TOTAL		T		TOTAL		T	R	TOTAL	TOTAL
AM	AM	163	577	145	885	287	600	165	1,051	566	2,032	365	2,962	465	1,620	382	2,466	7,365
	k Hour .ctor				0.88				0.96				0.89				0.88	0.95

					TUR	NI	NG	M	OVE	MF	ΕΝΤ	C	OUN	TS				
	<u> </u>																	
	Proje	ct		Sh	ort Ra	nae	<u> </u>						Proje	ct				
	Name				ick Tra	_							Numb				00169	
				NN	/ 36 St	ree	t &											
	Locat	ion:		NN	/ 72 A	ven	ue						Coun	t Da	ate:		07/12/01	
	Obse	rver:		DP	Α								Day o Week			т	hursday	
	<u> </u>				/ 72 A\								NW 36		DEE	 T		
т	IME	N	ORTH					нво			EAST			51			OUND	GRANI
					TOTAL		T		TOTAL	L			TOTAL	L	T	R	TOTAL	TOTAL
1:00	1:15																	
PM	PM	81	221	61	363	186	165	121	472	98	327	50	475	90	291	41	422	1,732
1:15 PM	1:30 PM	98	336	72	506	162	196	89	447	69	344	78	491	79	304	50	433	1,877
1:30 PM	1:45 PM	122	226	85	433	166	195	123	484	145	465	74	684	91	378	75	544	2,145
1:45	2:00	122	220	05	433	100	195	123	404	145	405	14	004	91	570	75		2,145
PM	PM	98	208	79	385	182	141	112	435	123	413	55	591	82	427	108	617	2,028
		MI		V D	EAK H		P T								SIIM	ΜΛ	PV	
			DDA	• •														
				NW	/ 72 A	VEN	IUE						NW 36	ST	REE	Т		
	IME							-	-		EAST	-					DUND	GRAN
1:00	2:00	L	T		TOTAL		T		TOTAL		T		TOTAL		T	R	TOTAL	TOTAL
PM	2.00 PM	403	1,001	300	1,704	703	704	449	1,856	439	1,564	260	2,263	345	1,414	277	2,036	7,860
	K HOUR CTOR				0.83				0.95				0.82				0.82	0.91
	1																	

					TUR	NI	NG	M	OVF	MF	ΞΝΤ	Ċ	OUN		5			
	Proje	ct		Sh	ort Ra	nae							Projec	ct				
	Name				ick Tra								Numb				00169	
				NW	/ 36 St	ree	t &						Count	t				
	Locat	ion:		NW	/ 72 A	/en	ue						Date:				07/12/01	
				-	cision		-							_				
	Obse	n or			gineer rveyin	-							Day o Week:			,	Chureday	
	Obse	iver.		Su	veyni	у, п 	NC.						vveen.	• 			Thursday	
				NV	N 72 A	VE	NUE						NW 36	5 S1	REE	T		
	IME	N	ORTI			S	OUT				EASTI	-	-		WE		DUND	GRAN
		L	Т	R	TOTAL	L	Т	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	TOTAL
4:00 PM	4:15 PM	64	220	90	374	100	193	107	400	85	356	13	454	49	401	68	518	1,746
4:15	4:30	05	400		040	100	477		400	100	400		0.40		070	70	504	4.004
PM 4:30	PM 4:45	65	168	77	310	106	177	147	430	138	482	23	643	61	370	70	501	1,884
PM	PM	73	189	92	354	227	284	137	648	113	457	17	587	54	391	59	504	2,093
4:45 PM	5:00 PM	81	223	71	375	186	192	107	485	141	525	30	696	67	376	55	498	2,054
			223		373	100	192	107	405	141	525	50	090		370		490	2,004
		F	PM	PEA	K HO	UR	TUF	RNI	NG MC)VE	MEN	T (COUNT	Γ SI	JMM	AR	Y	
	0	0			AN	IUAL	AVE	RAG		Y TR	AFFIC	со	NDITION	IS			1	
		1																
													NW 36		DEE	·		
т	TIME NORTHBOUND										EASTI			5 3 1			OUND	GRANI
			Т	R			T		TOTAL					L	T	R	TOTAL	TOTAL
4:00	5:00	286		333					1,983						1,553			7,855
PM	PM K HOUR										.,							
	CTOR				0.94				0.76				0.85				0.98	0.93
				sonal ctor =	Weekly		1.01											

					TUR	NI	NG	M	OVE	ME	NT	C	DUN	٢S				
	Proje Name			1	ort Rai Ick Tra	-							Proje Numb				00169	
	Locat	tion:			/ 36 St / 87 Av								Coun	t Da	ite:		07/17/01	
	Obse	rver:		Eng	ecision gineer rveying	ing							Day o Week				Tuesday	
											<u> </u>							<u> </u>
				NV	N 87 A	VE	NUE					N	W 36	STI	REE	T		
Т	IME	N	ORTI	HBOI	JND	S	OUT	нво	UND		EAST	BOU	ND		WE	STB	OUND	GRAN
INTE	ERVAL	L	Τ	R	TOTAL	L	Т	R	TOTAL	L	T	R	TOTAL	L	Τ	R	TOTAL	TOTAL
8:00 AM	8:15 AM	67	187	92	346	32	101	34	167	117	461	138	716	75	193	32	300	1,529
8:15	8:30																	
AM	AM	65	206	109	380	40	105	43	188	139	434	131	704	121	197	32	350	1,622
8:30 AM	8:45 AM	63	176	103	342	41	110	36	187	121	450	125	696	85	203	24	312	1,537
8:45	9:00																	
AM	AM	62	158	90	310	38	124	54	216	142	431	148	721	78	227	22	327	1,574
			A IVI I	PEA		-	-									AR	Y	
														•				
				N٧	N 87 A	VE	NUE					ľ	W 36	STI	REE	T		
	IME	N	ORTI	HBO	-		OUT				EAST	BOU			WE	-	OUND	GRAND
	ERVAL	<u> </u> L	Τ	R	TOTAL	L	Т	R	TOTAL	L	T	R	TOTAL	L	T	R	TOTAL	TOTAL
8:00 AM	9:00 AM	260	734	398	1,392	153	444	169	766	524	1,794	547	2,865	363	828	111	1,302	6,325
	K HOUR CTOR				0.91				0.88				0.98				0.92	0.97
		FDOT	Sea	sonal	Weekly		1.01											

				-	TURI	NIN	١G	MC	OVEN	ИE	NT	CC	DUNT	S				
	Proje Name				t Ranç k Traff								Proje Numb				00169	
	Locat	tion:			86 Stre 87 Ave								Coun Date:	t			07/17/01	
	Obse	rver:		DPA									Day o Week				Tuesday	
					87 A\	1							IW 36	ST				
	IME ERVAL	L		THBOU R	ND TOTAL				UND TOTAL	L	EAST T		ND TOTAL	L	WE	STB R	TOTAL	
1:00	1:15																	
PM 1:15	PM 1:30	126	174	89	389	60	126	30	216	100	206	62	368	98	258	32	388	1,361
PM	PM	139	148	69	356	24	149	54	227	113	284	121	518	116	242	31	389	1,490
1:30 PM	1:45 PM	126	136	87	349	31	218	77	326	109	275	103	487	121	273	23	417	1,579
1:45 PM	2:00 PM	141	181	97	419	45	159	63	267	100	333	119	552	96	199	31	326	1,564
		MI	DDA	AY PE	AK H	DU	R TL	JRN	ING N	10V	EME	NT	COUN	IT S	SUN	IMA	RY	
					ANNU	JAL	AVER	RAGE	DAILY	TRA	FFIC (CONE	DITIONS			1		
				NW	87 A\	/FN						N	IW 36	ST	RFF	<u>.</u> т		
т	TIME NORTHBOUND				-		SOUT	нво	UND		EAST							GRAND
	ERVAL	L	Τ		TOTAL	L	T	R	TOTAL		Τ		TOTAL	L	T	R	TOTAL	TOTAL
1:00 PM	2:00 PM	537	645	345	1,528	162	659	226	1,046	426	1,109	409	1,944	435	982	118	1,535	6,054
PEA	K HOUR CTOR				0.90				0.79				0.87				0.91	0.95
	1	ΠΕΠΟΤ	Sea	sonal W	/eeklv					II	I					1		

	PLUMMER CIATES, INC																	
					TUF	RN	NG	G N	IOVE	M	EN	T (COU	NT	S			
	Proje Name				ort Ra uck Tra								Proje Numb				00169	
	Locat	tion:			/ 36 St / 87 A								Coun Date:	t			07/17/01	
	Obse	rver:		Eng	ecisior gineer rveyin	ring							Day o Week				Tuesday	
				NV	N 87 A	VE	NUE						NW 3	6 S	FREE	ET		
Т	IME	N	ORTH	IBO	UND	S	OUT	нво	UND		EAS	гво	UND		WES	STB	DUND	GRANE
INTE	ERVAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
4:00 PM	4:15 PM	151	133	66	350	37	195	105	337	63	217	90	370	101	279	43	423	1,480
4:15 PM	4:30 PM	127	78	30	235	34	202	102	338	69		84	290	155	301	25	481	1,344
4:30 PM	4:45 PM	102	89	44	235	37	220	146	403		246		400	118	243	21	382	1,420
4:45 PM	5:00 PM	148	124				215	83	345		181		295	94	374	23	491	1,479
					ак но													
			IVI				101			JVL	_ 1 V I L		0001				\ I	
	TIME NORTHBOUND									EAS		NW 3	6 <u>5</u>			OUND	GRAND	
					TOTAL	L	T		TOTAL		EA5	R	TOTAL	L	T	R	TOTAL	TOTAL
4:00 PM	5:00 PM	533	428			157	840				789				1,209			5,780
PEA	K HOUR CTOR				0.83				0.88				0.85				0.90	0.97
Note:	1999	FDOT Volum			l Weekly =		1.01											

					TURN	JIN	GN	МC)VEN	ИF	ENT	C	OUN [.]	ΓS				
	Project Name:	<u> </u>			ort Ran ck Traf	-							Projeo Numb				00169	
	Locatio	on:			41 Str 107 Av								Count	t Da	te:		08/08/01	
	Observ	ver:		Enç	cision gineerir veying	-							Day o Week			We	ednesday	
													NW 41	ST	RE	ET		
1	ГІМЕ	1	NOR	гнво	UND	S	OUTH	IBO	UND		EAS	ГВО	UND		WE	STB	OUND	GRAND
	ERVAL	L	Т	R	TOTAL	L	Т		TOTAL	L	Т		TOTAL	L	Т		TOTAL	TOTAL
8:00 AM	8:15 AM	6	37	23	66	82	73	27	182	6	213	21	240	54	100	19	173	661
8:15																		
AM 8:30	8:30 AM	15	53	75	143	88	94	12	194	36	438	89	563	79	112	24	215	1,115
AM	8:45 AM		49	63	130	59	102	18	179	24	363	86	473	78	122	27	227	1,009
8:45 AM	9:00 AM	17	60	47	124	69	95	11	175	27	444	95	566	70	130	29	229	1,094
			M F	PEA	K HOU	R TI	JRN		G MO	VE	MEN	ТС	OUNT	SU	MM	AR'	Y	
				A	NNUAL	AVE	ERAG	GE	DAILY	TF	RAFFI	сс	ONDITI	ONS	5			
														<u>от</u>				
	ГІМЕ			гнво		6	OUTH				EAS		NW 41	51			OUND	GRAND
	ERVAL			R	TOTAL	L	T		TOTAL	L		R	TOTAL	L	T	R	TOTAL	TOTAL
8:00	9:00 AM	57	201	210	468		368	69			1,473				469			3,918
	K HOUR ACTOR				0.81				0.94				0.81				0.92	0.87
/									L									

					ΓURN	IINC	GΝ	10	VEN	IE	NT	C	OUN [.]	ΤS				
	Proje Name			1	ort Rang ck Traf	-							Project Number:				00169	
	Location:				41 Stre 107 Av								Count Date:					
	Obse	oserver:		DP	٩								Day of Week:				Thursday	
		NW 107 AVENUE								NW 41 STREET EASTBOUND WESTBOUND								
TIME			R TOTAL		SOUTHBOUND				EAS		TOTAL	L		WESTBOUND T R TOTAL		GRANE TOTAL		
1:00	1:15																	
PM 1:15	PM 1:30	47	93	85	225	75	145	31	251	15		44	164	109	205	41	355	995
PM	PM	109	102	118	329	93	120	28	241	31	126	53	210	128	185	35	348	1,128
1:30 PM	1:45 PM	63	81	102	246		83	11	133	17	158	54	229	104	123	30	257	865
1:45 PM	2:00 PM	65	72	123		57	97	23	0	30	166	60	256	111	181	48	340	856
		MID	DA`	Y PE	AK HO	UR	TUR	RNI	NG M	OV	'EM	EN ⁻	ΓΟυ	NT S	SUN			
	7																	
				NW	/ 107 A	VFN							NW 4'		RF			
TIME		NORTHBOUND				SOUTHBOUND					EASTBOUND			WESTBOUND				GRANE
INTERVAL		L	T	R	TOTAL	L	Т	R	TOTAL	L	Τ	R	TOTAL	L	Τ	R	TOTAL	TOTAL
1:00 PM	2:00 PM	287		432	1,071	267	449	94	631	94	561	213	868	457	701	156	1,313	3,882
PEAK HOUR FACTOR					0.81				0.62				0.84				0.92	0.85

					TUR	NIN	IG	MC	OVE	ME	EN'	T C	COUN	ITS	5			
	Name):			ort Rar Ick Tra	-							Projec Numb				00169	
	Locat	tion:			/ 41 St / 107 A								Count Date:				07/17/01	
	Obse	rver:		Eng	cision gineeri rveying	ng a							Day o Week:					
				NV	V 107 A	٩VE	NUE						NW 4	1 S	TRE	ΞТ		
Т	IME			HBO	UND	1	OUTI						UND				DUND	GRAND
4:00	4:15		Т	R		L	T	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
4.00 PM	PM	73	66	61	200	70	129	33		11	93	39	143	161	365	29	555	1,130
4:15 PM	4:30 PM	59	56	62	177	53	117	28	198	10	96	42	148	182	475	25		1,205
4:30 PM	4:45 PM	56	51		166	49	126	29	204	14	92	38	144	162	414	34	610	1,124
4:45 PM	5:00 PM	61		69	217	59	127	27	213	6	52	18	76	102	396	40	538	1,044
			PM F	PEA	ΚΗΟΙ	JR T	URI	NIN	G MO	VE	ME	NT	COUN	T SI	JMM	AR'	Y	
				F		L AV	'ERA	GE	DAILY	TF	RAF	FIC	CONDI	τιο	IS			
	IME			NV HBO	V 107 A	1					EAC	TDA	NW 4	15			DUND	GRAND
				R	TOTAL	L			TOTAL	L		R	TOTAL			R	TOTAL	TOTAL
	5:00	251	263	254	768	233	504	118				138		613	1,667			4,548
	PM K HOUR CTOR				0.88				0.91				0.86				0.87	0.93
Note:	1999	FDOT Volum			Weekly -		1.01											

				T	JRNI	NG	эM	OV	/EME	ΞN	IT (C	DUN ⁻	ΓS				
	Proje Name			1	rt Ranç k Trafi	-							Proje Numb				00169	
	Locat	ion:		1	12 Stre 87 Ave								Coun	t Da	ite:		07/18/01	
	Obse	rver:		Engi	ision neerin eying,	-							Day o Week			We	dnesday	
				NW	87 AV	'FNI	JF						NW 1	2 S	TRF	FT		<u> </u>
Т	IME		NORT	HBOUN	-			нво	UND		EAS	тво					OUND	GRANI
INTE	ERVAL	L	T	R	TOTAL	L	Τ		TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
8:00 AM	8:15 AM	86	649	443	1,178	34	127	23	184	7	96	16	119	46	103	110	259	1,740
Aivi 8:15	8:30	00	049	443	1,170	34	127	23	104		90	10	119	40	103		209	1,740
AM	AM	86	669	552	1,307	32	112	23	167	1	108	12	121	35	113	128	276	1,871
8:30 AM	8:45 AM	108	664	537	1,309	28	97	39	164	8	100	20	128	48	97	127	272	1,873
8:45	9:00																	
AM	AM	75	566	426	1,067	34	130	34	198	10	69	21	100	36	124	133	293	1,658
									<u> </u>									<u> </u>
		A		EAK	HOUR	TUI	RNI	IG	MOVE	M	ΕΝΤ	. C	OUNT	SU	MM	AR'	Y	
					ANNUA	L AVI	ERAG	E D/	AILY TR	AF	FIC C	ON	DITIONS	5				
		<u> </u>																
				N 13 A 7	07 414	/ - - - -									 T -> -	┙┎╌╶┱╴		
		1	NODT	N VV HBOUN	87 AV								NW 1	25				
	IME ERVAL	L		R	TOTAL	L			TOTAL		EAS T		DUND TOTAL	L		R	OUND TOTAL	GRAN
8:00	9:00		2,548		4,861		466		713		373					498	1,100	7,142
AM	AM	555	2,540	1,900		120	+00	119	L	20	513	09		100	431	730		
	K HOUR CTOR				0.93				0.90				0.91				0.94	0.95

				Т	URN	IIN	G N	10'	VEM	ΕN	T (CC	DUNT	S				
	Proje Name				t Ranç k Traf	-							Proje Numb				00169	
	Locat	tion:			12 Stre 37 Ave								Count Date:	t			07/18/01	
	Obse	rver:											Day o Week			We	dnesday	
	<u> </u>			<u> </u>														
				NW	87 AV	/EN	UE						NW 12	ST	RE	ET		
	IME			HBOUN	ID		SOUTH		7		_	ТВО	-				OUND	GRAND
		L	T	R		L	T	R	TOTAL	L	T	R	TOTAL	L	Т	R	TOTAL	TOTAL
1:00 PM	PM	96	323	107	526	31	297	68	396	24	67	47	138	140	199	149	488	1,548
1:15 PM	1:30 PM	63	363	114	540	41	242	60	343	19	71	52	142	122	200	103	425	1,450
1:30 PM	1:45 PM	54	330	127	511		289	84	429	24	78	50	152	149	176	94	419	1,511
1:45 PM	2:00 PM	57	332	139	528	43	387	78	0	32	82	64	178		194		427	1,133
	<u> </u>	MI	DDA	Y PE	AK HC	UR		RNIN	NG MC)VE	ME	NT	COUN	тs	UM	MA	RY	
	1	1		AN	INUAL	AVE	ERAG	ΕD	AILY T	RAF	FIC	CO	NDITIC	DNS				
				NW	87 AV	/EN							NW 12	2 ST	RF	ET		
Т	IME		NORT	HBOUN	-		SOUTH	во	JND		EAS	тво					OUND	GRAND
INTE	RVAL	L	Т	R	TOTAL	L		R	TOTAL	L	Τ	R	TOTAL	L	Τ	R	TOTAL	TOTAL
1:00 PM	2:00 PM	273	1,361	492	2,126		1,227	293	1,180	100	301	215	616	562	777	438	1,777	5,698
PEA	K HOUR CTOR				0.97				0.68				0.86				0.90	0.91
	1																	

	PLUMMER & IATES, INC.	x																
					TUR	NII	NG I	MO	VEN	1E	NT	Ċ	OUN	TS				
	Projec Name			1	ort Ran Ick Tra	_							Projec Numb				00169	
	Locati	ion:			/ 12 Str / 87 Av								Count Date:				08/08/01	
	Obser	ver:		Enç	cision gineeri veying								Day o Week:			We	dnesday	
					W 87 A													
	TIME ERVAL		NORT	R	TOTAL	L	SOUT	R		L		R	DUND TOTAL	L		R	OUND TOTAL	GRAND
4:00	4:15																	
PM 4:15	PM 4:30	21	198	48	267	22	457	137	616	16	52	54	122	157	278	69	504	1,509
PM	PM	13	219	67	299		433	154	600		54	59	124	158	247	72	477	1,500
4:30 PM	4:45 PM	26	211	77	314	23	446	161	630		69	87	178	185	254	78	517	1,639
4:45 PM	5:00 PM	23	222	79	324	10	487	106	603	12	43	91	146	196	200	84	480	1,553
		P	PM F	PEA	к нои	R	TURN	IING	6 MOV	'EN	/EN		COUNT	SU	MM	AR'	Y	
				Α	NNUAL	. A\	/ERA	GE [DAILY .	TR	AFF	IC C	ONDIT	ION	S			
					W 87 A								NW 12	2 97		ET		
7	TIME		NORT				SOUT		JND		EAS	твс					OUND	GRAND
INT	ERVAL	L	T	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	L	Т	R	TOTAL	TOTAL
4:00 PM	5:00 PM	84	859	274	1,216	69		564	2,473	62	220	294	576	703	989	306	1,998	6,263
PEA	AK HOUR ACTOR				0.93				0.97				0.80				0.96	0.95
Note:	1999	FDO ⁻ Volur			ll Weekly =		1.01											

Signal Phasing & Timing

TIME PT OFF EWW F Y R SG Y R NW F G Y R EWL Y S Y M CYC	2
MIN: 5 20 8 22 1 5	
0 23 0 5 20 4 2 9 4 2 4 7 1 4 2 8 3 12 7 75	5LATE NIT
600 1 5 6 20 4 2 14 12 1 4 2 12 3 90	EARLY MO
700 2 17 42 20 4 2 20 4 2 4 22 1 4 2 20 3 150)AM PEAK
720 3 0 60 20 4 2 26 4 2 4 22 2 4 2 25 3 7 180	MID AM P
900 4 8 20 20 4 2 20 4 2 4 16 1 4 2 18 3 120	POST AM
930 6 8 8 20 4 2 16 4 2 4 18 1 4 2 12 3 100)AVG
1515 9 10 9 20 4 2 17 4 2 4 22 1 4 2 16 3 110	PRE PM P
1600 10 5 20 20 4 2 4 22 9 4 2 26 3 150)PM PEAK
1800 11 8 7 20 4 2 17 4 2 4 21 1 4 2 19 3 110	POST PM
1840 20 8 5 20 4 2 4 14 1 4 2 13 3 90)EVE
2000 22 0 5 20 4 2 11 4 2 4 13 1 4 2 12 3 12 7 87	NITE 0/4
2100 21 0 5 20 4 2 10 4 2 4 11 1 4 2 10 3 12 7 82	2NITE 1/3
2330 23 0 5 20 4 2 9 4 2 4 7 1 4 2 8 3 12 7 75	5LATE NIT

TIME PT OFF NSG G Y R EWM Y EWG Y R NSM Y S Y M CYC MIN: 19 6 11 6 7 76 NITE 3/ 100 23 0 20 1 4 2 6 4 12 4 2 6 4 6 65 LATE NI 530 20 0 19 1 4 2 10 4 12 4 2 9 4 6 65 LATE NI 600 21 47 19 1 4 2 10 4 12 4 2 8 4 70 EARLY M 630 1 49 19 1 4 2 16 4 20 4 2 17 4 90 PRE AM 120 POS AM 120 PRE PM 130	PATT	ERN	SCHI	EDULI	E F	OR	447	77 G#	AL]	LOWAY	RI RI	D	& NW	36	ST	FOR	DAY	#	4 (SE	СТ	ION	257)
0 22 0 19 1 4 2 10 4 17 4 2 9 4 7 76 NITE 3/ 100 23 0 20 1 4 2 6 4 12 4 2 6 4 12 4 2 6 4 12 4 2 9 4 6 65 LATE NI 530 20 0 19 1 4 2 11 4 12 4 2 9 4 7 72 LATE NI 600 21 47 19 1 4 2 10 4 12 4 2 8 4 70 EARLY M 630 1 49 19 1 4 2 16 4 20 4 2 14 4 90 PRE AM 160 AM PEAK 905 5 45 2 1 4 2 13 4 120 POST AM 110 MID DAY	TIME	\mathbf{PT}	OFF	NSG	G	Y	R	EWM	Y	EWG	Y	R	NSM	Y					S	Y	М	CYC	
100 23 0 20 1 4 2 6 4 12 4 2 6 4 12 4 2 6 4 12 4 2 6 4 12 4 2 6 4 12 4 2 6 4 12 4 2 9 4 7 72 LATE NI 600 21 47 19 1 4 2 10 4 12 4 2 8 4 70 EARLY M 630 1 49 19 1 4 2 16 4 20 4 2 14 4 90 PRE AM 700 2 105 27 1 4 2 35 4 60 4 2 17 4 90 PRE AM 120 POST AM 1000 8 87 23 1 4 2 15 4 120 PRE PM 120 PRE PM 1500 10 89 29		M	IN:	19				6		11			б										
530 20 0 19 1 4 2 11 4 12 4 2 9 4 7 72 LATE NI 600 21 47 19 1 4 2 10 4 12 4 2 8 4 70 EARLY M 630 1 49 19 1 4 2 16 4 20 4 2 14 4 90 PRE AM 700 2 105 27 1 4 2 35 4 60 4 2 17 4 90 PRE AM 905 5 45 22 1 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 15 4 110 MID DAY 1500 10 89 29 1 4 2 25 4 36 4 2 18 4 130 EARLY P 1600 14	0	22	0	19	1	4	2	10	4	17	4	2	9	4							7	76	NITE 3/
600 21 47 19 1 4 2 10 4 12 4 2 8 4 70 EARLY M 630 1 49 19 1 4 2 16 4 20 4 2 14 4 90 PRE AM 700 2 105 27 1 4 2 35 4 60 4 2 17 4 160 AM PEAK 905 5 45 22 1 4 2 23 4 41 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 15 4 110 MID DAY 1500 10 89 29 1 4 2 25 4 36 4 2 15 4 120 PRE PM 1520 12 94 30 1 4 2 35 4 2 18 4 130 EARLY P <td>100</td> <td>23</td> <td>0</td> <td>20</td> <td>1</td> <td>4</td> <td>2</td> <td>6</td> <td>4</td> <td>12</td> <td>4</td> <td>2</td> <td>б</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>б</td> <td>65</td> <td>LATE NI</td>	100	23	0	20	1	4	2	6	4	12	4	2	б	4							б	65	LATE NI
630 1 49 19 1 4 2 16 4 20 4 2 14 4 90 PRE AM 700 2 105 27 1 4 2 35 4 60 4 2 17 4 90 PRE AM 905 5 45 22 1 4 2 23 4 41 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 15 4 110 MID DAY 1500 10 89 29 1 4 2 20 4 35 4 2 15 4 120 PRE PM 1520 12 94 30 1 4 2 32 4 4 2 18 4 130 EARLY P	530	20	0	19	1	4	2	11	4	12	4	2	9	4							7	72	LATE NI
700 2 105 27 1 4 2 35 4 60 4 2 17 4 160 AM PEAK 905 5 45 22 1 4 2 23 4 41 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 15 4 110 MID DAY 1500 10 89 29 1 4 2 20 4 35 4 2 15 4 120 PRE PM 1520 12 94 30 1 4 2 32 4 4 2 18 4 130 EARLY P 1600 14 14 <td< td=""><td>600</td><td>21</td><td>47</td><td>19</td><td>1</td><td>4</td><td>2</td><td>10</td><td>4</td><td>12</td><td>4</td><td>2</td><td>8</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70</td><td>EARLY M</td></td<>	600	21	47	19	1	4	2	10	4	12	4	2	8	4								70	EARLY M
905 5 45 22 1 4 2 23 4 41 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 13 4 120 POST AM 1000 8 87 23 1 4 2 18 4 33 4 2 15 4 110 MID DAY 1500 10 89 29 1 4 2 20 4 35 4 2 15 4 120 PRE PM 1520 12 94 30 1 4 2 25 4 36 4 2 18 4 130 EARLY P 1600 14 14 38 1 4 2 32 4 45 4 2 24 4 160 PM PEAK 1800 16 92 29 1 4 2 21 4 80 EVENING 1845 17 4	630	1	49	19	1	4	2	16	4	20	4	2	14	4								90	PRE AM
1000 8 87 23 1 4 2 18 4 33 4 2 15 4 110 MID DAY 1500 10 89 29 1 4 2 20 4 35 4 2 15 4 120 PRE PM 1520 12 94 30 1 4 2 25 4 36 4 2 18 4 130 EARLY P 1600 14 14 38 1 4 2 32 4 45 4 2 24 4 160 PM PEAK 1800 16 92 29 1 4 2 25 4 41 4 2 22 4 7 138 POST PM 1845 17 42 19 1 4 2 11 4 80 EVENING	700	2	105	27	1	4	2	35	4	60	4	2	17	4								160	AM PEAK
1500 10 89 29 1 4 2 20 4 35 4 2 15 4 120 PRE PM 1520 12 94 30 1 4 2 25 4 36 4 2 18 4 130 EARLY P 1600 14 14 38 1 4 2 32 4 45 4 2 24 4 160 PM PEAK 1800 16 92 29 1 4 2 25 4 41 4 2 22 4 7 138 POST PM 1845 17 42 19 1 4 2 11 4 80 EVENING	905	5	45	22	1	4	2	23	4	41	4	2	13	4								120	POST AM
1520 12 94 30 1 4 2 25 4 36 4 2 18 4 130 EARLY P 1600 14 14 38 1 4 2 32 4 45 4 2 24 4 160 PM PEAK 1800 16 92 29 1 4 2 25 4 41 4 2 22 4 7 138 POST PM 1845 17 42 19 1 4 2 11 4 80 EVENING	1000	8	87	23	1	4	2	18	4	33	4	2	15	4								110	MID DAY
1600 14 14 38 1 4 2 32 4 45 4 2 24 4 160 PM PEAK 1800 16 92 29 1 4 2 25 4 41 4 2 22 4 7 138 POST PM 1845 17 42 19 1 4 2 11 4 80 EVENING	1500	10	89	29	1	4	2	20	4	35	4	2	15	4								120	PRE PM
1800 16 92 29 1 4 2 25 4 41 4 2 22 4 7 138 POST PM 1845 17 42 19 1 4 2 11 4 80 EVENING	1520	12	94	30	1	4	2	25	4	36	4	2	18	4								130	EARLY P
1845 17 42 19 1 4 2 11 4 18 4 2 11 4 80 EVENING	1600	14	14	38	1	4	2	32	4	45	4	2	24	4								160	PM PEAK
	1800	16	92	29	1	4	2	25	4	41	4	2	22	4							7	138	POST PM
2000 22 0 19 1 4 2 10 4 17 4 2 9 4 7 76 NITE 3/	1845	17	42	19	1	4	2	11	4	18	4	2	11	4								80	EVENING
	2000	22	0	19	1	4	2	10	4	17	4	2	9	4							7	76	NITE 3/

PATTERN	SCH	EDUI	LE FO	OR	433	88 G.	ALI	LOWA	ΥF	RD &	NW	12	ST	FOR	DAY	<u> </u>	4 (SECTION 212)
TIME PT	OFF	NSC	G G	Y	R	EWL	Y	EWP	G	Y	R	NSL	Y				S Y M CYC
M	IN:		1			5			1			5					
0 19	1	20	4	4	2	5	3	20	1	4	2	6	3				6 74LATE NIG
500 9	0	20	10	4	2	7	3	15	1	4	2	6	3				7 77LATE NIG
600 12	12	20	21	4	2	7	3	12	1	4	2	6	3				85PRE AM
630 2	52	20	60	4	2	8	3	17	1	4	2	6	3				130EARLY/LA
730 8	55	20	66	4	2	9	3	20	1	4	2	6	3				140HEAVY AM
800 11	64	20	86	4	2	9	3	20	1	4	2	6	3				160VERY HEA
900 2	52	20	60	4	2	8	3	17	1	4	2	6	3				130EARLY/LA
1515 9	10	9	20	4	2	17	4	2	4	22	1	4	2	16	3		110PRE PM P
1330 10	38	20	22	4	2	20	3	12	1	4	2	7	3				100MID DAY
1530 4	38	20	22	4	2	20	3	12	1	4	2	7	3				100MID DAY
1545 7	70	20	42	4	2	33	3	10	1	4	2	6	3				12 130PM PEAK
1900 4	38	20	22	4	2	20	3	12	1	4	2	7	3				100MID DAY
2000 14	24	20	21	4	2	12	3	12	1	4	2	6	3				90POST PM
2200 6	0	20	4	4	2	6	3	10	1	4	2	6	3				7 65LATE NIG
2300 3	1	20	4	4	2	6	3	10	1	4	2	6	3				7 65NIGHT 3/

PATTERN SCH	IEDULE FOR	2 3163 MI	LAM DAI	IRY & NW	36 ST FOR DAY #	4 (SECTION 76)
TIME PT OFF	EWG G Y	R NSM	Y NSG Y	R EWM	Y	S Y M CYC
MIN:	19	5	10	5		
0 23 0	24 1 4	2 10	4 12 4	£ 2 10	4	7 77LATE NIT
530 22 C	27 1 4	2 10	4 16 4	£ 2 10	4	7 84NITE 0/2
600 21 C	38 1 4	2 8	4 16 4	127	4	90pre am p
630 20 C	48 1 4	2 17	4 18 4	ł 2 16	4	120PRE AM P
700 4 C	65 1 4	2 21	4 20 4	1 2 2 3	4	150AM PEAK
810 3 C	62 1 4	2 21	4 29 4	1 2 27	4	160AM PEAK
840 2 0	65 1 4	2 2 4	4 24 4	1 2 26	4	160AM PEAK
910 1 C	50 1 4	2 28	4 33 4	1 2 28	4	160POST AM
930 5 C) 42 1 4	2 26	4 22 4	ł 2 19	4	130MID MORN
1025 6 0) 49 1 4	2 30	4 27 4	1 2 2 3	4	150PRE NOON
1110 7 C	57 1 4	2 36	4 31 4	1 2 25	4	170NOON PEA
1300 10 C	60 1 4	2 3 3	4 31 4	£ 2 25	4	170POST NOO
1500 13 C	62 1 4	2 34	4 31 4	1 2 22	4	170pm peak
1600 14 C	53 1 4	2 3 9	4 44 4	£ 2 2 3	4	180PM PEAK
1630 15 C	61 1 4	2 35	4 47 4	1 2 26	4	190PM PEAK
1800 16 C) 44 1 4	2 21	4 40 4	1 2 14	4	140PM PEAK
1830 17 66	53914	2 15	4 23 4	ł 2 12	4	110EVENING
1900 19 C	29 1 4	2 13	4 17 4	£ 2 10	4	90LATE EVE
2000 22 0	27 1 4	2 10	4 16 4	£ 2 10	4	7 84NITE 0/2
2315 23 0	24 1 4	2 10	4 12 4	1 2 10	4	7 77LATE NIT

HCS Worksheets

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM pk Project ID: E/W St: NW 36 Street Inter.: NW 72 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 72 Avenue

			DIC	TUNUT	עמי	AT DICOL	CTION	SOUND	ARI					
	E	astbour	nd	We	stbou	nd	Nor	thbou	ind	Soi	uthbo	und		
	L	Т	R	L	Т	R	L	Т	R	L	Т	R		
No. Lanes	s	2 3	1	2	3	1	2	3	0	2	2	1		
LGConfig	r :	L T	R	L	Т	R	L	TR		L	Т	R		
Volume	566				1620		163	577	145	287		16!	-	
Lane Widt) 12.0		12.0	12.0	12.0	12.0	12.0		12.0	12.0		.0	
RTOR Vol	I		36			38			0			16		
Duration	1.0	C	Area 1				areas ions							
Phase Com	mbinati	on 1	2	3	4		.10110	5	6	7		8		
EB Left		A				NB	Left	A						
Thru	L		A				Thru		A					
Right	ıt		A				Right	:	A					
Peds							Peds							
WB Left		A				SB	Left	A						
Thru			A				Thru		A					
Right			A				Right	-	A					
Peds							Peds							
NB Right						EB	Right							
	T .					WB	Right			<u>^</u>				
SB Right		07 0	C2 0											
Green		27.0	63.0					21.0		0				
Green Yellow		4.0	4.0					4.0	4.0	0				
Green								4.0 0.0	4.0 2.0		160	0	sec	7
Green Yellow		4.0 0.0	4.0 2.0	ction	Perf	ormano	ce Summ	4.0 0.0 Cyc	4.0 2.0 cle Lei		160.	0	secs	5
Green Yellow All Red Appr/ I	Lane	4.0 0.0 In Ad;	4.0 2.0 ntersec	Ra	Perf		ce Summ Lane	4.0 0.0 Cyc nary_	4.0 2.0 cle Le			0	secs	5
Green Yellow All Red Appr/ I Lane 0		4.0 0.0 In Ad; Flow	4.0 2.0 ntersec	Ra	atios			4.0 0.0 Cyc mary Group	4.0 2.0 cle Le: p Ap	ngth:	h	0	sec	5
Green Yellow All Red Appr/ I Lane (Grp (Lane Group Capacit	4.0 0.0 In Ad; Flow	4.0 2.0 ntersec j Sat w Rate	Ra	atios		Lane	4.0 0.0 Cyc mary Group	4.0 2.0 cle Le: p Ap	ngth: proacl	h	0	secs	3
Green Yellow All Red Appr/ I Lane C Grp C Eastbound	Lane Group Capacit	4.0 0.0 In Ad: Flow	4.0 2.0 htersec j Sat w Rate (s)	Ra v/c	g g	/C	Lane Delay	4.0 0.0 Cyc ary_ Group 7 LOS	4.0 2.0 cle Le: p Ap	ngth: proacl	h	0	secs	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L	Lane Group Capacit; d 542	4.0 0.0 In Ad: Flow 7 322	4.0 2.0 ntersec j Sat w Rate (s)	Ra v/c	g g	/c	Lane Delay 277.1	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u></u>	ngth: proach ay LOS	h	0	secs	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T	Lane Group Capacity d 542 1874	4.0 0.0 In Ad: Flow 7 322 475	4.0 2.0 ntersec j Sat w Rate (s)	Ra 	9 9 0 0 1 0	.17 .39	Lane Delay 277.1 310.6	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u></u>	ngth: proacl	h	0	sec	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R	Lane Group Capacity d 542 1874 584	4.0 0.0 In Ad: Flow 7 322	4.0 2.0 ntersec j Sat w Rate (s)	Ra v/c	9 9 0 0 1 0	/c	Lane Delay 277.1	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u></u>	ngth: proach ay LOS	h	0	sec	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T	Lane Group Capacity d 542 1874 584	4.0 0.0 In Ad: Flow 7 322 475	4.0 2.0 htersec j Sat w Rate (s) 13 59 32	Ra 	g 9 0 0 4 0 9 0	.17 .39	Lane Delay 277.1 310.6	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u></u>	ngth: proach ay LOS	h	0	sec	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound	Lane Group Capacit d 542 1874 584 d	4.0 0.0 In Ad: Flow 7 32: 47! 148	4.0 2.0 htersec j Sat w Rate (s) 13 59 32	Ra v/c	g 9 0 0 1 0 9 0 0 0	/C .17 .39 .39	Lane Delay 277.1 310.6 40.0	4.0 0.0 Cyd Group 7 LOS L F 5 F D	4.0 2.0 cle Les <u></u>	ngth: proacl ay LOS	h	0	sec	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound L	Lane Group Capacit d 542 1874 584 d 542	4.0 0.0 In Ad: Flow 7 32: 47! 148 32:	4.0 2.0 ntersec j Sat w Rate (s) 13 59 32 13 59	Ra v/c 1.10 1.12 0.59	g 9 0 0 4 0 9 0 0 0 0 0 1 0	/C .17 .39 .39 .17	Lane Delay 277.1 310.6 40.0 88.2	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u>p</u> App <u></u> <u></u> 273	ngth: proacl ay LOS	h	0	sec	5
Green Yellow All Red Appr/ I Lane (Grp (Eastbound T R Westbound L T	Lane Group Capacit; d 542 1874 584 d 542 1874 584	4.0 0.0 In Ad Flow 7 32: 47! 14! 32: 47!	4.0 2.0 ntersec j Sat w Rate (s) 13 59 32 13 59	Ra v/c 1.10 1.10 0.90 0.92	g 9 0 0 4 0 9 0 0 0 0 0 1 0	.17 .39 .39 .17 .39	Lane Delay 277.1 310.6 40.0 88.2 53.8	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u>p</u> App <u></u> <u></u> 273	ngth: proacl ay LOS	h	0	secs	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound L T R	Lane Group Capacit; d 542 1874 584 d 542 1874 584	4.0 0.0 In Ad Flow 7 32: 47! 14! 32: 47!	4.0 2.0 ntersec j Sat w Rate (s) 13 59 32 13 59 32	Ra v/c 1.10 1.10 0.90 0.92	g 9 0 0 4 0 9 0 0 0 1 0 2 0	.17 .39 .39 .17 .39	Lane Delay 277.1 310.6 40.0 88.2 53.8	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u>p</u> App <u></u> <u></u> 273	ngth: proacl ay LOS	h	0	secs	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound L T R Northbour	Lane Group Capacit; d 542 1874 584 d 542 1874 584 nd	4.0 0.0 In Ad Flow 7 32: 47! 14! 32: 47! 14!	4.0 2.0 ntersec j Sat w Rate (s) 13 59 32 13 59 32	Ra v/c 1.10 1.10 0.90 0.92 0.62	g g 0 0 4 0 9 0 0 0 0 0 0 0 2 0 L 0	.17 .39 .39 .17 .39 .39	Lane Delay 277.1 310.6 40.0 88.2 53.8 40.9	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 cle Les <u>p</u> App <u></u> <u></u> 273	ngth: proach ay LOS .7 F 5 E	h	0	secs	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound L T R Northbour L	Lane Group Capacit; d 542 1874 584 d 584 1874 584 nd 422 836	4.0 0.0 In Ad: Flow 7 32: 47! 148 32: 47! 148 32:	4.0 2.0 ntersec j Sat w Rate (s) 13 59 32 13 59 32	Ra v/c 1.10 1.10 0.59 0.90 0.62 0.41	g g 0 0 4 0 9 0 0 0 0 0 0 0 2 0 L 0	.17 .39 .39 .17 .39 .39 .39	Lane Delay 277.1 310.6 40.0 88.2 53.8 40.9 64.4	4.0 0.0 Cyc Group 7 LOS	4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	ngth: proach ay LOS .7 F 5 E	h	0	sec	3
Green Yellow All Red Appr/ I Lane (Grp (Grp (Grp (Grp (Grp (Grp (Grp (Grp	Lane Group Capacit 3 d 542 1874 584 d 542 1874 584 nd 422 836 nd 422	4.0 0.0 In Ad Flow 7 32: 47! 148 32: 47! 148 32: 47! 148 32: 46: 32:	4.0 2.0 ntersec j Sat w Rate (s) 13 59 32 13 59 32 13 59 32 13	Ra v/c 1.10 1.14 0.59 0.90 0.62 0.42 0.91 0.72	g 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.17 .39 .39 .17 .39 .39 .13 .18	Lane Delay 277.1 310.6 40.0 88.2 53.8 40.9 64.4 81.0 72.5	4.0 0.0 Cyc Group 7 LOS 7 LOS	4.0 2.0 cle Lez <u>p</u> App <u>Del</u> 273 58. 77.	ngth: proacl ay LOS .7 F 5 E 9 E	h	0	sec	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound L T R Northbour L TR Southbour L T	Lane Group Capacit; d 542 1874 584 d 542 1874 584 nd 422 836 nd 422 600	4.0 0.0 In Ad Flow 7 32: 47! 14! 32: 47! 14! 32: 46: 32: 33:	4.0 2.0 htersec j Sat w Rate (s) 13 59 32 13 59 32 13 59 32 13 59 32	Ra v/c 1.10 1.12 0.59 0.92 0.62 0.42 0.92 0.72 1.09	g 0 0 4 0 0 0 0 0 1 0 2 0 1 0 2 0 5 0	.17 .39 .39 .17 .39 .39 .13 .18 .13 .18	Lane Delay 277.1 310.6 40.0 88.2 53.8 40.9 64.4 81.0 72.5 202.9	4.0 0.0 Cyc Group 7 LOS 7 F	4.0 2.0 cle Lez <u>p</u> App <u>Del</u> 273 58. 77.	ngth: proach ay LOS .7 F 5 E	h	0	sec	5
Green Yellow All Red Appr/ I Lane C Grp C Eastbound L T R Westbound L T R Northbour L TR Southbour L	Lane Group Capacit 3 d 542 1874 584 d 542 1874 584 nd 422 836 nd 422	4.0 0.0 In Ad Flow 7 32: 479 148 32: 479 148 32: 46: 32: 33: 148	4.0 2.0 htersec j Sat w Rate (s) 13 59 32 13 59 32 13 59 32 13 59 32	Ra v/c 1.10 1.12 0.59 0.92 0.62 0.41 0.93 0.72 1.09 0.55	g g 0 0 4 0 0 0 0 0 1 0 2 0 1 0 2 0 1 0 2 0 5 0 3 0	.17 .39 .39 .17 .39 .13 .18 .13 .18 .18	Lane Delay 277.1 310.6 40.0 88.2 53.8 40.9 64.4 81.0 72.5 202.9 63.2	4.0 0.0 Cyc Groun 7 LOS 7 LOS	4.0 2.0 cle Lez <u>p</u> App <u>Del</u> 273 58. 77.	ngth: proacl ay LOS .7 F 5 E 9 E .7 F	hS	0	sec	5

HCS2000: Signalized Intersections Release 4.1

Analyst: DPA Agency: Miami, FL Date: 7/12/2001 Period: MD pk Project ID: E/W St: NW 36 Street Inter.: NW 72 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169 N/S St: NW 72 Avenue

								ECTION							
		Eas	tboun			stbou			thboi		Sou	ithbo	und		
		L	Т	R	L	Т	R	L	Т	R	L	Т	R		
NT- T			2				1								
No. Lan		2 L	3 T	1 R	2 L	3 T	1 R	2 L	3 TR	0	2 L	2 T	1 R		
LGConfi Volume			1564		345		277		1001	300	703	704	449		
Lane Wi			12.0				12.0			300	12.0				
RTOR Vo		2.0	12.0	25	12.0	12.0	25	12.0	12.0	0	12.0	12.0	25	0	
	- 1			25			23	I		0	l		25	1	
Duratio	on 1	.00		Area 🗅				areas tions							
Phase C	ombina	tion	1	2	3	4		.010115	5	6	7		8		
EB Lef			А				NE	Left	A						
Thr	u			А				Thru		А					
Rig	ht			A				Right		A					
Ped	s							Peds							
WB Lef	t		A				SE	Left	A						
Thr	u			A				Thru		A					
Rig				A				Right		A					
Ped								Peds							
	a .														
NB Rig	ht						EE	Right							
SB Rig							WE								
SB Rig Green			25.0	61.0					33.0		0				
SB Rig Green Yellow	ht		4.0	4.0					33.0 4.0	4.0	0				
SB Rig Green	ht								33.0 4.0 0.0	4.0 2.0		1 - 0	0		
SB Rig Green Yellow	ht		4.0 0.0	4.0 2.0	rtion	Dorf	WE	Right	33.0 4.0 0.0 Cyc	4.0 2.0 cle Lei		170.	0	sec	S
SB Rig Green Yellow All Red	iht I		4.0 0.0 In	4.0 2.0			WE	Right	33.0 4.0 0.0 Cyc ary_	4.0 2.0 cle Lei	ngth:		0	sec	S
SB Rig Green Yellow All Red Appr/	ht Lane		4.0 0.0 In Adj	4.0 2.0 tersed Sat		Perf	WE	Right	33.0 4.0 0.0 Cyc ary_	4.0 2.0 cle Lei			0	sec	s
SB Rig Green Yellow All Red Appr/ Lane	ht Lane Group)	4.0 0.0 In Adj Flow	4.0 2.0 tersed Sat Rate	Ra	atios	WE	ce Summ Lane	33.0 4.0 0.0 Cyc ary Group	4.0 2.0 cle Len	ngth: proach	1	0	sec	S
SB Rig Green Yellow All Red Appr/	ht Lane)	4.0 0.0 In Adj Flow	4.0 2.0 tersed Sat		atios	WE	Right	33.0 4.0 0.0 Cyc ary Group	4.0 2.0 cle Len	ngth:	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou	Lane Group Capac)	4.0 0.0 In Adj Flow (4.0 2.0 sat Rate s)	Ra v/c	atios 	WE	Right ce Summ Lane Delay	33.0 4.0 0.0 Cyc ary Group LOS	4.0 2.0 cle Len	ngth: proach	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L	Lane Group Capac Ind 473	eity	4.0 0.0 In Adj Flow (321	4.0 2.0 tersed Sat Rate s)	Ra v/c	atios g	WE orman //C .15	Right Ce Summ Lane Delay 174.9	33.0 4.0 0.0 Cyc ary Group LOS F	4.0 2.0 cle Len p App 	ngth: oroach ay LOS	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T	Lane Group Capac Ind 473 1708	eity	4.0 0.0 In Adj Flow (321 475	4.0 2.0 tersed Sat (Rate s)	Ra v/c	atios g 2 C	WE orman 7/C .15 .36	Right Ce Summ Lane Delay 174.9 104.4	33.0 4.0 0.0 Cyc ary_ Group LOS F F	4.0 2.0 cle Len p App 	ngth: proach	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R	Lane Group Capac Ind 473 1708 532	eity	4.0 0.0 In Adj Flow (321	4.0 2.0 tersed Sat (Rate s)	Ra v/c	atios g 2 C	WE orman //C .15	Right Ce Summ Lane Delay 174.9	33.0 4.0 0.0 Cyc ary Group LOS F	4.0 2.0 cle Len p App 	ngth: oroach ay LOS	1	0	sec	S
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou	Lane Group Capac Ind 473 1708 532 Ind	eity	4.0 0.0 In Adj Flow (321 475 148	4.0 2.0 sat Rate s)	Ra v/c 1.02 1.01 0.48	2 C 3 C	WE orman /C .15 .36 .36	Right Ce Summ Lane Delay 174.9 104.4 43.0	33.0 4.0 0.0 Cyc Group LOS F F D	4.0 2.0 cle Len p App 	ngth: oroach ay LOS	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L	Lane Group Capac Ind 473 1708 532 Ind 473) ty	4.0 0.0 In Adj Flow (321 475 148 321	4.0 2.0 tersed Sat Rate s) 3 9 2 3	Ra v/c 1.02 1.01 0.48 0.80	2 C 2 C 3 C	WE orman /C .15 .36 .36 .15	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4	33.0 4.0 0.0 Cyc Group LOS F F D F	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T	Lane Group Capac Ind 473 1708 532 Ind 473 1708) ty	4.0 0.0 In Adj Flow (321 475 148 321 475	4.0 2.0 tersec Sat Rate s) 3 9 2 2 3 9	Ra v/c 1.02 1.01 0.48 0.80 0.91	2 C 2 C 3 C 3 C	WE ormar .15 .36 .15 .36	Right Lane Delay 174.9 104.4 43.0 80.4 60.6	33.0 4.0 0.0 Cyc Group LOS F F D F E	4.0 2.0 cle Len p App 	ngth: proach ay LOS .8 F	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R	Lane Group Capac 1708 532 1708 473 1708 532) ty	4.0 0.0 In Adj Flow (321 475 148 321	4.0 2.0 tersec Sat Rate s) 3 9 2 2 3 9	Ra v/c 1.02 1.01 0.48 0.80	2 C 2 C 3 C 3 C	WE orman /C .15 .36 .36 .15	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4	33.0 4.0 0.0 Cyc Group LOS F F D F	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo	Lane Group Capac 1708 532 1708 532 1708 532 1708) ty	4.0 0.0 In Adj Flow (321 475 148 321 475 148	4.0 2.0 Sat Rate s) 3 9 2 3 9 2	Ra v/c 1.02 1.02 0.48 0.80 0.92 0.52	2 C 2 C 3 C 0 C 2 C	WE orman //C .15 .36 .36 .36	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4 60.6 43.9	33.(4.0 0.0 Cyc ary_ Group LOS F F D F E D	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L	Lane Group Capac Ind 473 1708 532 Ind 473 1708 532 Und 624) ty	4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 321	4.0 2.0 Sat Rate s) 3 9 2 3 9 2 3 3	Ra v/c 1.02 1.03 0.48 0.80 0.93 0.52 0.73	2 CC 2 CC 3 CC 2 CC 2 CC 2 CC 2 CC	WE orman //C .15 .36 .36 .36 .36 .36 .19	Right Lane Delay 174.9 104.4 43.0 80.4 60.6	33.(4.0 0.0 Cyc ary Group LOS F F D F E D E	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F 9 E	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo	Lane Group Capac 1708 532 1708 532 1708 532 1708) ty	4.0 0.0 In Adj Flow (321 475 148 321 475 148	4.0 2.0 Sat Rate s) 3 9 2 3 9 2 3 3	Ra v/c 1.02 1.02 0.48 0.80 0.92 0.52	2 CC 2 CC 3 CC 2 CC 2 CC 2 CC 2 CC	WE orman //C .15 .36 .36 .36	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4 60.6 43.9	33.(4.0 0.0 Cyc ary_ Group LOS F F D F E D	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L	Lane Group Capac Ind 473 1708 532 Ind 473 1708 532 Ind 624 838) ty	4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 321	4.0 2.0 Sat Rate s) 3 9 2 3 9 2 3 3	Ra v/c 1.02 1.03 0.48 0.80 0.93 0.52 0.73	2 CC 2 CC 3 CC 2 CC 2 CC 2 CC 2 CC	WE orman //C .15 .36 .36 .36 .36 .36 .19	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4 60.6 43.9	33.(4.0 0.0 Cyc ary_ Group LOS F F D F E D E	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F 9 E	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L Southbo L	Lane Group Capac Ind 473 1708 532 Ind 473 1708 532 Ind 624 838) ty	4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 321	4.0 2.0 Sat Rate s) 3 9 2 3 9 2 3 4	Ra v/c 1.02 1.03 0.48 0.80 0.92 0.52 0.72 1.72 1.24	2 C 2 C 3 C 2 C 3 C 2	WE orman //C .15 .36 .36 .36 .36 .36 .19	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4 60.6 43.9 67.9 512.8	33.0 4.0 0.0 Cyc ary Group LOS F F D F E D F F F F	4.0 2.0 cle Len p App Dela 111	ngth: proach ay LOS .8 F 9 E	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L TR Southbo	Lane Group Capac Ind 473 1708 532 Ind 473 1708 532 Vund 624 838) ty	4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 475 148 321	4.0 2.0 tersec Sat Rate s) 3 9 2 3 9 2 3 4 3	Ra v/c 1.02 1.01 0.48 0.80 0.91 0.52 0.71 1.71	2 C 2 C 3 C 2 C 3 C 2	WE Orman 7/C .15 .36 .36 .36 .36 .15 .36 .19 .18	Ce Summ Lane Delay 174.9 104.4 43.0 80.4 60.6 43.9 67.9	33.0 4.0 0.0 Cyc ary Group LOS F F D F E D F F F F	4.0 2.0 cle Len Dela 111 61.9	ngth: proach ay LOS .8 F 9 E	1	0	sec	s
SB Rig Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L Southbo L	Lane Group Capac Ind 473 1708 532 Ind 473 1708 532 Ind 624 838 Jund 624 838 Jund 624 838	; ity	4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 459 321 331 148	4.0 2.0 Sat Rate s) 3 9 2 3 9 2 3 4 3 2	Ra v/c 1.02 1.01 0.48 0.80 0.91 0.52 0.71 1.71 1.24 1.28 1.73	2 CC 2 CC 3 CC 3 CC 2 CC 2 CC 2 CC 2 CC	WE Orman //C .15 .36 .36 .15 .36 .19 .18 .19 .18 .19 .18	Right Ce Summ Lane Delay 174.9 104.4 43.0 80.4 60.6 43.9 67.9 512.8 589.3	33.0 4.0 0.0 Cyc ary Group LOS F F D F E D F F F F	4.0 2.0 cle Len Dela 111 61.9	ngth: proach ay LOS .8 F 9 E F	1	0	sec	s

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM pk Project ID: E/W St: NW 36 Street

Inter.: NW 72 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 72 Avenue

	Ea	stbou	nd	We	stboui	nd	No:	rthbo	und	So	uthbo	und	
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Lanes	2	3	1	2	3	1	 2	3	0	2	2	1	_
LGConfig	L L	Т	R	L	Т	R	L	TR		L	Т	R	
Volume	482	1838	84	233	1553	255	286	808	333	625	854	503	

Lane Wi RTOR Vo		12.0 12.0 8	12.0 12	2.0 12.0 20	12.0	12.0 0	I	2.0 12	2.0 12. 20	0	
Duratio	n 1.00	Area	a Type: Al Signa	ll other al Operat							
Phase C	ombinatio	n 1 2	3	4		5	6	7	8		
EB Lef		A		NB	Left	A					
Thr		A			Thru		A				
Rig		A			Right		A				
Ped					Peds						
WB Lef		A		SB		A					
Thr		A			Thru		A				
Rig		A			Right		A				
Ped					Peds						
NB Rig				EB	Right						
SB Rig	110	26.0 62.	0	WB	Right	35.0	47.0				
Green Yellow		4.0 4.0				35.0 4.0	47.0				
All Red		0.0 2.0				4.0 0.0	2.0				
AII Keu		0.0 2.0)				e Leng	+h · 10	0 0	secs	
		Inters	ection Pe	rformanc	e Summ		C LICITY		.0.0	BCCB	
Appr/	Lane	Adj Sat			Lane (Appr	oach			
Lane	Group	Flow Rat									
Grp	Capacity		v/c	g/C	Delay	LOS	Delay	LOS	_		
Eastbou	nd										
L	444	3242	1.17	0.14	408.1	F					
Т	1567	4803	1.26	0.33	539.3	F	497.2	F			
R	488	1495	0.17	0.33	45.8	D					
Westbou											
L	444	3242	0.57	0.14	78.4	Ε					
Т	1567	4803	1.07	0.33	198.7		167.8	F			
R	488	1495	0.52	0.33	52.9	D					
Northbo						_					
L	597	3242	0.52	0.18	70.6	E		_			
TR	1136	4593	1.08	0.25	234.6	F	201.7	F			
Southbo	und										
L	597	3242	1.13	0.18	328.0	F					
T	827	3343	1.11	0.25	289.5	F	430.6	F			
R	370	1495	1.40	0.25	812.9	F		-			
		ction Dela				-	ction	LOS =	F		
			<u> </u>		,						

Analyst: DPA Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM pk Project ID: E/W St: NW 36 Street Inter.: NW 87 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 87 Avenue

			SI	GNALIZ	ZED II	NTERSE	CTION	SUMM	ARY				
	Eas	stbou	nd	Wes	stbou	nd	Not	rthbou	und	Sou	uthbo	und	
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Tomor		3	0		3	0		3	0		2	1	
No. Lanes		0	0		0	0		0	0		_ 3	1	
LGConfig	L L	TR		L L	TR		L	TR		<u> </u>	Т	R	
Volume	524	1794	547	363	828	111	260	734	398	153	444	169	
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	12.0	
RTOR Vol			0			0			0			17	
Duration	1.00		Area	Type:	All (other	areas						
				Sig	gnal (Operat	ions_						
Phase Combin	natio	n 1	2	3	4]		5	6	7		8	
EB Left		A				NB	Left	A					
Thru			A				Thru		A				

Rig Ped WB Lef Thr Rig Ped NB Rig SB Rig Green Yellow All Red	s t u ht ht ht	A A A 35.0 60.0 4.0 4.0 0.0 2.0		SB EB WB	Right Peds Left A Thru Right Peds Right Right 17. 4.0 0.0	4.0	secs
		Intersed	ction Per	rformanc	e Summary_		5005
Appr/ Lane	Lane Group	Adj Sat Flow Rate	Ratio		Lane Grou		
Grp	Capacity	(s)	v/c	g/C	Delay LOS	Delay LOS	
Eastbou	nd						
L	730	3335	0.76	0.22	63.2 E		
TR	1788	4767	1.38	0.38	734.2 F	611.4 F	
Westbou	nd						
L	730	3335	0.52	0.22	55.8 E		
TR	1820	4852	0.54	0.38	39.6 D	44.1 D	
Northbo	und						
L	354	3335	0.77	0.11	80.6 F		
TR	819	4680	1.46	0.17	892.7 F	741.0 F	
Southbo	und						
L	354	3335	0.45	0.11	68.1 E		
Т	864	4940	0.54	0.17	60.8 E	63.0 E	
R	269	1538	0.59	0.17	64.4 E		
	Interse	ction Delay	= 457.8	(sec/ve	h) Inter	section LOS = F	

Analyst: DPA Agency: Miami, FL Date: 7/17/2001 Period: MD pk Project ID: E/W St: NW 36 Street Inter.: NW 87 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

	Ea	stbou		-	ZED II stbou	NTERSE nd	-	SUMM		Sou	athbo	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	2	3	0	2	3	0	2	3	0	2	3	1 R
LGConfig Volume	426	TR 1109	409	435	TR 982	118	537	TR 645	345	162	659	226
Lane Width RTOR Vol	12.0	12.0	0	12.0	12.0	0	12.0	12.0	0	12.0	12.0	20

Dur	ation 1	.00	Area	Туре: А	ll ot	ther	areas					
				Sign	al Op	perat	ions					
Pha	se Combina	tion 1	2	3	4			5	б	7	8	
EB	Left	A				NB	Left	А				
	Thru		A				Thru		A			
	Right		А				Right		A			
	Peds						Peds					
WB	Left	A				SB	Left	A				
	Thru		А				Thru		A			
	Right		А				Right		A			
	Peds						Peds					
NB	Right					EB	Right					
SB	Right					WB	Right					

Green Yellow All Red		4.00.0	33.0 4.0 2.0		c			4.0 2.0 e Lengt	h: 110.0	secs
Appr/	Lane				rformanc os				ach	
Lane	Group							112620		
Grp	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	LOS	
Eastbou	nd									
L	546	3335		0.82	0.16		D			
TR	1422	4740		1.12	0.30	272.2	F	224.7	F	
Westbou	nd									
L	546	3335		0.84	0.16	56.9	Е			
TR	1458	4861		0.79	0.30	38.6	D	43.8	D	
Northbo	und									
L	455	3335		1.24	0.14	502.1	F			
TR	1022	4682		1.02	0.22	120.1	F	254.4	F	
Southbo	und									
L	455	3335		0.38	0.14	43.8	D			
Т	1078	4940		0.64	0.22	40.4	D	41.6	D	
R	336	1538		0.65	0.22	43.5	D			
	Interse	ction D	elay	= 155.0	(sec/ve	h) Ir	iterse	ction L	OS = F	

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM pk Project ID: E/W St: NW 36 Street Inter.: NW 87 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 87 Avenue

SIGNALIZED INTERSECTION SUMMARY

	Eas	stbou	nd	Wes	stbou	nd	No:	rthbo	und	So	uthbo	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	2	3	0	2	3	0	2	3	0	2	3	1
LGConfig	L	TR		L	TR		L	TR		L	Т	R
Volume	239	789	340	473	1209	113	533	428	218	157	840	440
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	12.0
RTOR Vol			0			0			0			44

Area Type: All other areas Duration 1.00 ____Signal Operations_ Phase Combination 1 2 3 4 5 6 7 8 EB Left NB Left Α Α Thru А Thru А Right Right А Α Peds Peds WB Left SB Left Α Α Thru Α Thru А Right Α Right Α Peds Peds NB Right SB Right EB Right WB Right Green 32.0 45.0 24.0 39.0 Yellow 4.0 4.0 4.0 4.0 All Red 0.0 2.0 0.0 2.0 Cycle Length: 160.0 secs _Intersection Performance Summary_ Adj Sat Appr/ Lane Ratios Lane Group Approach Group Lane Flow Rate v/c g/C Delay LOS Delay LOS Grp Capacity (s)

Eastboun	d.							
L	673	3367	0.37	0.20	55.7	Е		
TR	1339	4762	0.89	0.28	63.5	Ē	62.2	Е
_	_							
Westboun								
L	673	3367	0.74	0.20	64.6	Ε		
TR	1385	4924	1.01	0.28	110.8	F	98.6	F
Northbou	ınd							
L	505	3367	1.11	0.15	298.5	F		
TR	1154	4736	0.59	0.24	54.2	D	164.7	F
Southbou	ınd							
L	505	3367	0.33	0.15	61.2	Е		
Т	1216	4988	0.73	0.24	57.9	Е	122.3	F
R	379	1553	1.10	0.24	283.2	F		
	Intersect	ion Delay	= 109.2	(sec/ve	h) In	iterse	ction L	JOS = F
	Intersect						ction L	JOS = F

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM peak hour Project ID: E/W St: NW 41 Street Inter.: NW 41 St / NW 107 Ave
Area Type: All other areas
Jurisd:
Year : 00169

· · · · · · · · · · · · · · · · · · ·			SI	GNALI	ZED I	NTERSE	CTION	SUMM	ARY				
	Ea	Eastbound Westbound					No:	rthbo	und	Southbound			
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Lanes	1	3	0	2	3	0	1	2	1	1	2	0	
LGConfig	L L	TR		L	TR		L	LT	R	L	LTR		
Volume	94	1473	294	284	469	100	57	201	210	301	368	69	
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0		
RTOR Vol			0			0			20			0	

Duration	1.00		Area	Type:	All	other	areas	
				Sid	qnal	Operat	tions	
Phase Comb	ination	1	2			ιĨ		5

				Srdu	ar op	erau	. 10119					
Phase	Combination	n 1	2	3	4			5	б	7	8	
EB Le	ft	A				NB	Left		A			
Th	ru		A				Thru		A			
Ri	ght		A				Right		A			
Pe	ds		Х				Peds		Х			
WB Le	ft	А				SB	Left	А				
Th	ru		A				Thru	А				
Ri	ght		A				Right	А				
Pe	ds		Х				Peds		Х			
NB Ri	ght					EB	Right					
SB Ri	ght					WB	Right					
Green		25.0	80.0				2	26.0	28.0			
Yellow		3.0	4.0					4.0	4.0			
All Re	d	0.0	2.0					2.0	2.0			
								Cycl	.e Leng	th: 18	80.0	secs
		In	tersed	tion P	erfor	manc	e Summa	ary				
Appr/	Lane	Adj	Sat	Rat	ios		Lane (Group	Appro	oach		
Lane	Group	Flow	Rate			_					_	
Grp	Capacity	(s)	v/c	g/C	!	Delay	LOS	Delay	LOS		
Eastbo	und											
L	237	170	3	0.44	0.1	4	72.4	Е				
TR	2120	477	1	0.93	0.4	4	56.1	Е	56.9	Е		
Westbo	und											
L	459	330	3	0.69	0.1	.4	78.2	Е				
TR	2117	476	4	0.30	0.4	4	32.1	С	47.5	D		

Northbou	nd									
L	265	1703	0.24	0.16	67.1	Е				
LT	530	3406	0.42	0.16	69.2	Е	89.1	F		
R	237	1524	0.89	0.16	116.6	F				
Southbou	nd									
L	246	1703	1.36	0.14	747.6	F				
LTR	480	3325	1.01	0.14	171.7	F	406.3	F		
	Intersect	ion Delay	= 124.6	(sec/ve	h) In	terse	ction L	OS	= F	

Analyst: DPA Agency: Miami, FL Date: 7/19/2001 Period: MD peak hour Project ID: E/W St: NW 41 Street Inter.: NW 41 St / NW 107 Ave
Area Type: All other areas
Jurisd:
Year : 00169

N/S St: NW 107 Avenue

SIGNALIZED INTERSECTION SUMMARY Eastbound Westbound Northbound Southbound L T L L R R Т L T Т R R 2 3 L TR 457 701 12.0 12.0 1 3 L TR No. Lanes 0 0 1 2 1 1 2 0 L LT R 287 351 432 12.0 12.0 12.0 L LTR 267 449 94 12.0 12.0 LGConfig Volume 94 561 213 156 12.0 12.0 Lane Width RTOR Vol 0 0 25 0

Duration	1.00	Area Type: All other areas

Duraci	1.00	1	AICA I	Signa			ions					
Phase	Combination	n 1	2	3	4	Ì		5	6	7	8	
EB Le	eft	A				NB	Left		A			
	nru		A				Thru		A			
	lght		A				Right		A			
	eds		Х				Peds		Х			
	eft	A				SB	Left	А				
	nru		A				Thru	A				
	lght		A				Right	А				
	eds		Х				Peds		Х			
NB Ri						EB	Right					
	lght					WB	Right					
Green		12.0	28.0					16.0	23.0			
Yellow		3.0	4.0					4.0	4.0			
All Re	ed	0.0	2.0					2.0	2.0			
		-			c		a		e Lengt	:h: 10	0.0	secs
7 /	T					rmanc	e Summa		7	1-		
Appr/	Lane	5	Sat	Rati	los		Lane (Jroup	Appro	bach		
Lane	Group		Rate		~ / (-	Deless	TOO	Deless	TOO	-	
Grp	Capacity	(;	s)	v/c	g/(-	Delay	LOS	Delay	LOS		
Eastbo	ound											
L	204	170	3	0.51	0.1	12	43.4	D				
TR	1313	4693		0.65	0.2		32.9	C	34.1	С		
Westbo	ound											
L	396	3303	3	1.28	0.1	12	572.9	F				
TR	1333	4760	0	0.71	0.2	28	34.3	С	221.7	F		
Northb			_		_							
L	392	170		0.81	0.2		50.1	D				
LT	783	3400		0.50	0.2		34.0	С	250.4	F		
R	351	1524	4	1.29	0.2	23	578.5	F				
Southb			_		_							
L	272	170:		1.09	0.1		265.6	F				
LTR	531	3318	8	1.14	0.1	16	311.8	F	296.5	F		

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM peak hour Project ID: E/W St: NW 41 Street Inter.: NW 41 St / NW 107 Ave Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 107 Avenue

SIG	NALIZED INTERSE	CTION SUMMARY	
Eastbound	Westbound	Northbound	
LTR	L T R	LTR	L T R
No. Lanes 1 3 0	2 3 0	1 2 1	
LGConfig L TR	L TR	LLTR	
Volume 41 336 138	613 1667 129	251 263 25	4 233 504 118
Lane Width 12.0 12.0	12.0 12.0	12.0 12.0 12	
RTOR Vol 0	0	25	0
Duration 1.00 Area I	Type: All other Signal Operat		
Phase Combination 1 2	3 4	5	6 7 8
EB Left A	NB	Left	A
Thru A Right A		Thru Right	A A
Peds X		Peds	X
WB Left A	SB	Left A	
Thru A		Thru A	
Right A		Right A	
Peds X		Peds	Х
NB Right	EB	Right	
SB Right Green 26.0 40.0	WB	Right 28.0	35.0
Yellow 3.0 4.0			4.0
All Red 0.0 2.0			2.0
		-	Length: 150.0 secs
	tion Performanc Ratios		Approach
Appr/ Lane Adj Sat Lane Group Flow Rate	RALIOS	Lane Group	Approach
Grp Capacity (s)	v/c g/C	Delay LOS	Delay LOS
Eastbound			
L 301 1736	0.15 0.17	52.8 D	
TR 1272 4770	0.40 0.27	45.4 D	46.0 D
Westbound			
L 584 3367	1.13 0.17	317.7 F	
TR 1316 4934	1.47 0.27	900.5 F	752.2 F
Northbound			
L 405 1736	0.67 0.23	56.4 E	
LT 810 3471	0.35 0.23		53.9 D
R 362 1553	0.68 0.23	57.6 E	
Southbound	0 66 0 10		
L 324 1736	$0.77 0.19 \\ 1.06 0.19$	70.0 E 211.8 F	173.1 F
			173.1 F
LTR 629 3372	1.00 0.17	211.0 1	

HCS2000: Signalized Intersections Release 4.1

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM pk Project ID: E/W St: NW 12 Street Inter.: NW 87 Ave and NW 12 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 87 Avenue

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			SIG	NALIZE	D INT	ERSE	CTION	SUMMA	ARY					
No. Lanes LGCOnfig I <thi< th=""> I <thi< th=""></thi<></thi<>		Eastbo	und	West	bound		Nor	thbou	und	Soi	uthbo	und		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		L T	R	L	Т	R	L	Т	R	L	Т	R		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No. Lanes	1 1	1	2	2	1	1	2	1	1	3	0	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	LGConfig	LT	R	L	Т	R	L	Т	R	L	TR			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Volume	26 373	69	165 4	37 4	98	355	2548	1958	128	466	119		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Lane Width	12.0 12.	0 12.0	12.0 1	2.0 1	2.0	12.0	12.0	12.0	12.0	12.0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	RTOR Vol		7		2	5			25			0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Duration	1.00	Area T											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Phase Combi	nation 1	2					5	6	7		8		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EB Left	A				NB	Left	A						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A						A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A						A					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		A				SB		A						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A						A					
SB Right WB Right Green 9.0 21.0 6.0 106.0 Yellow 3.0 4.0 3.0 4.0 All Red 0.0 2.0 0.0 2.0 Cycle Length: 160.0 secs Intersection Performance Summary Appr/Lane Adj Sat Ratios Lane Group Approach Grp Capacity (s) v/c g/C Delay LOS Delay LOS Eastbound L 99 1752 0.27 0.06 73.9 E R 206 1568 0.32 0.13 63.9 E Westbound L 191 3400 0.91 0.06 135.4 F T 460 3505 1.00 0.13 153.4 F F R 206 1568 2.42 0.13 F F														
Green9.0 21.0 6.0 106.0 Yellow 3.0 4.0 3.0 4.0 All Red 0.0 2.0 0.0 2.0 Cycle Length: 160.0 secsIntersection Performance SummaryAppr/LaneAdj SatRatiosLane GroupGrpCapacity(s) v/c g/C Delay LOSDelay LOSEastboundL99 1752 0.27 0.06 T 242 1845 1.62 0.13 F 994.5 FR 206 1568 0.91 0.06 L191 3400 0.91 0.06 135.4 FT 460 3505 1.00 0.13 153.4 FR 206 1568 2.42 0.13 F														
Yellow3.04.03.04.0All Red0.02.00.02.0Cycle Length: 160.0 secsIntersection Performance SummaryAppr/LaneGroupFlow RateLaneGroupApproachGrpCapacity(s) \sqrt{c} g/C Delay LOSDelay LOSEastboundL9917520.270.0673.9ET24218451.620.13F994.5FR20615680.320.1363.9EWestboundL19134000.910.06135.4FT46035051.000.13153.4FFR20615682.420.13FF		0 0	01 0			wв	Right		100	0				
All Red 0.0 2.0 0.0 2.0 Cycle Length: 160.0 secs Intersection Performance Summary Appr/ Lane Adj Sat Ratios Lane Group Approach Lane Group Flow Rate										.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
Intersection Performance SummaryAppr/LaneAdj SatRatiosLane GroupApproachLaneGroupFlow Rate $ -$ GrpCapacity(s) \sqrt{c} g/CDelay LOSDelay LOSEastboundL9917520.270.0673.9ET24218451.620.13F994.5FR20615680.320.1363.9EWestboundUUUUUUL19134000.910.06135.4FFR20615682.420.13FF	AII RCu	0.0	2.0							nath:	160	0 9	209	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Intersec	tion P	erfor	manc	e Summ			igen	100.	0 5.	200	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Appr/ Lar									proacl	n			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		up Fl	ow Rate					-		-				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Grp Cap	acity	(s)	v/c	g/C		Delay	LOS	Dela	ay LOS	5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Eastbound													
R 206 1568 0.32 0.13 63.9 E Westbound 191 3400 0.91 0.06 135.4 F T 460 3505 1.00 0.13 153.4 F F R 206 1568 2.42 0.13 F F	L 99	1	752	0.27	0.0	б	73.9	Е						
Westbound Image: State of the state of t	т 24	2 1	845	1.62	0.1	3		F	994	.5 F				
L 191 3400 0.91 0.06 135.4 F T 460 3505 1.00 0.13 153.4 F F R 206 1568 2.42 0.13 F		6 1	568	0.32	0.1	3	63.9	E						
T 460 3505 1.00 0.13 153.4 F F R 206 1568 2.42 0.13 F F														
R 206 1568 2.42 0.13 F														
							153.4			F				
		6 1	568	2.42	0.1	3		F						
Northbound								_						
L 66 1752 5.67 0.04 F										_				
T 2322 3505 1.16 0.66 311.7 F F							311.7			F				
R 1039 1568 1.96 0.66 F		139 1	568	1.96	0.6	б		F,						
Southbound			750	2 05	0 0	4								
L 66 1752 2.05 0.04 F							10 F		270	0 7				
TR 3235 4883 0.19 0.66 10.5 B 370.0 F	IR 32	4 4	003	0.19	0.6	0	10.5	В	370	.0 F				
	In	itersectio	n Delay	=	(se	c/vel	h) I	nter	section	n LOS	= F			

HCS2000: Signalized Intersections Release 4.1

Analyst: DPA Agency: Miami, FL Date: 7/18/2001 Period: MD pk Project ID: E/W St: NW 12 Street Inter.: NW 87 Ave and NW 12 St Area Type: All other areas Jurisd: Year : 00169

	L Fo	stbound		tbound		CTION S	thbou			thbo		
	L Ea	T R		T	R	L	T	R	L	T	R	
No. Lane				2 T	1 R	1 L	2 T	1 R	1 _L	3 TR	0	-
Volume Lane Wid	100 1th 12.0	301 21 12.0 12		777 · 12.0	438 12.0	273 1	1361		173 12.0	1227 12.0	293	
RTOR Vol	1	20			25			25			0	
Duratior	n 1.00	Are	ea Type: Sig	All of nal O								
Phase Co EB Left	ombinatio	n 1 A	2 3	4	NB	Left	5 A	6	7		8	
Thru			A			Thru	A	А				
Righ	nt	i	A			Right		A				
Peda		_				Peds	_					
WB Left Thru		A	7		SB	Left Thru	A	7				
Righ			A A			Right		A A				
Peda		-				Peds		11				
NB Righ					EB	Right						
SB Righ	nt				WB	Right						
Green			8.0				6.0	80.0)			
Yellow All Red			.0 .0				3.0 0.0	4.0 2.0				
mini neu		0.0 2	. 0					cle Ler	ngth:	130.	0 se	ecs
		Inte	rsection		rmanc							
				tios				o Apr	monal	ı		
Appr/	Lane	Adj Sa				Lane (Group		proach	-		
Lane	Group	Adj Sa Flow Ra	ate		-							
		Adj Sa Flow Ra		g/(Lane (Delay			ay LOS			
Lane Grp Eastbour	Group Capacity nd	Adj Sa Flow Ra (s)	atev/c	g/(Delay	LOS					
Lane Grp Eastbour L	Group Capacity nd 108	Adj Sa Flow Ra (s) 1752	ate	g/0	06	Delay 253.3	LOS	 Dela	ay LOS			
Lane Grp Eastbour L T	Group Capacity nd 108 255	Adj Sa Flow Ra (s) 1752 1845	ate	g/0 0.0)6 14	Delay 253.3 621.6	LOS F F		ay LOS			
Lane Grp Eastbour L	Group Capacity nd 108 255 217	Adj Sa Flow Ra (s) 1752	ate	g/0 0.0)6 14	Delay 253.3	LOS	 Dela	ay LOS			
Lane Grp Eastbour L T R	Group Capacity nd 108 255 217	Adj Sa Flow Ra (s) 1752 1845	ate	g/0 0.0 0.1	06 14 14	Delay 253.3 621.6	LOS F F	 Dela	ay LOS			
Lane Grp Eastbour L T R Westbour L T	Group Capacity nd 108 255 217 nd 209 485	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505	ate v/c	g/0 0.0 0.1 0.1 0.1	06 14 14 06 14	Delay 253.3 621.6	LOS F F F F F	 Dela	ay LOS			
Lane Grp Eastbour L T R Westbour L T R	Group Capacity nd 108 255 217 nd 209 485 217	Adj Sa Flow Ra (s) 1752 1845 1568 3400	ate	g/0 0.0 0.1 0.1 0.1	06 14 14 06 14	Delay 253.3 621.6	LOS F F F F	 Dela	ay LOS			
Lane Grp Eastbour L T R Westbour L T R Northbou	Group Capacity nd 108 255 217 nd 209 485 217 und	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09	g/0 0.1 0.2 0.2 0.2	06 14 14 14 06 14 14	Delay 253.3 621.6	LOS F F F F F F	 Dela	ay LOS			
Lane Grp Eastbour L T R Westbour L T R Northbou L	Group Capacity nd 108 255 217 nd 209 485 217 und 81	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568 1752	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09 3.70	g/0 0.1 0.2 0.1 0.2 0.2	06 14 14 06 14 14 14	Delay 253.3 621.6 164.1	LOS F F F F F F F F F	Dela	3 F F			
Lane Grp Eastbour L T R Westbour L T R Northbou L T	Group Capacity nd 108 255 217 nd 209 485 217 und 81 2157	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568 1752 3505	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09 3.70 0.69	g/0 0 0 0 0 0 0	D6 14 14 06 14 14 14 05 52	Delay 253.3 621.6 164.1 17.8	LOS F F F F F F F B	Dela	ay LOS			
Lane Grp Eastbour L T R Westbour L T R Northbou L	Group Capacity nd 108 255 217 nd 209 485 217 und 81 2157 965	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568 1752	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09 3.70	g/0 0 0 0 0 0 0	D6 14 14 06 14 14 14 05 52	Delay 253.3 621.6 164.1	LOS F F F F F F F F	Dela	3 F F			
Lane Grp Eastbour L T R Westbour L T R Northbou L T R	Group Capacity nd 108 255 217 nd 209 485 217 und 81 2157 965	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568 1752 3505	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09 3.70 0.69	g/0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	06 14 14 06 14 14 14 05 52 52	Delay 253.3 621.6 164.1 17.8	LOS F F F F F F B	Dela	3 F F			
Lane Grp Eastbour L T R Westbour L T R Northbou L T R Southbou	Group Capacity nd 108 255 217 nd 209 485 217 und 81 2157 965 und	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568 1752 3505 1568	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09 3.70 0.69 0.53	g/0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	06 14 14 06 14 14 05 52 52 52	Delay 253.3 621.6 164.1 17.8	LOS F F F F F B B B	410.	3 F F			
Lane Grp Eastbour L T R Westbour L T R Northbou L Southbou L	Group Capacity nd 108 255 217 nd 209 485 217 und 81 2157 965 und 81 3009	Adj Sa Flow Ra (s) 1752 1845 1568 3400 3505 1568 1752 3505 1568 1752 4890	ate v/c 1.02 1.30 0.99 2.96 1.76 2.09 3.70 0.69 0.53 2.35	g/0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	06 14 14 06 14 14 05 52 52 05 52	Delay 253.3 621.6 164.1 17.8 14.9 14.8	LOS F F F F F F B B F B B F B	410.	3 F F 1 F 0 F	3		

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM pk Project ID: E/W St: NW 12 Street Inter.: NW 87 Ave and NW 12 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 87 Avenue

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
PedsPedsWBLeftAThruARightAPedsNBRightSBRightSBRightSBRightSBRightSBRightSBSiletSBRightSBSiletGreen33.03.04.0All Red0.02.0Cycle Length:11Tersection Performance SummaryAppr/LaneAdj SatRatiosCapacity(s)V/cg/cDelay LOSDelay LOSEastboundL44913415832.070.08FR134158R134158387134330.850.2554.8D	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{tabular}{ c c c c c c } \hline Cycle Length: 130.0 \\ \hline Intersection Performance Summary_{$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	secs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Eastbound L 449 1770 0.14 0.25 37.7 D T 158 1863 1.47 0.08 936.9 F F R 134 1583 2.07 0.08 F Westbound L 871 3433 0.85 0.25 54.8 D	
L 449 1770 0.14 0.25 37.7 D T 158 1863 1.47 0.08 936.9 F F R 134 1583 2.07 0.08 F Westbound L 871 3433 0.85 0.25 54.8 D	
L 449 1770 0.14 0.25 37.7 D T 158 1863 1.47 0.08 936.9 F F R 134 1583 2.07 0.08 F Westbound L 871 3433 0.85 0.25 54.8 D	
L 449 1770 0.14 0.25 37.7 D T 158 1863 1.47 0.08 936.9 F F R 134 1583 2.07 0.08 F Westbound L 871 3433 0.85 0.25 54.8 D	
T 158 1863 1.47 0.08 936.9 F F R 134 1583 2.07 0.08 F Westbound L 871 343 0.85 0.25 54.8 D	
R 134 1583 2.07 0.08 F Westbound L 871 3433 0.85 0.25 54.8 D	
Westbound L 871 3433 0.85 0.25 54.8 D	
L 871 3433 0.85 0.25 54.8 D	
R 134 1583 2.17 0.08 F	
Northbound	
L 82 1770 1.07 0.05 344.0 F	
T 1688 3539 0.54 0.48 24.2 C 46.1 D	
R 755 1583 0.35 0.48 21.6 C	
Southbound	
L 82 1770 0.89 0.05 160.1 F	
TR 2340 4906 1.08 0.48 191.2 F 190.4 F	
Intersection Delay = (sec/veh) Intersection LOS = F	

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM pk w/imp Project ID: E/W St: NW 36 Street

Inter.: NW 72 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 72 Avenue

			SIGNA	ALIZE	D INTERS	SECTION	SUMMA	ARY			
	E	astbound			bound		thbou		Sou	ithbo	und
	L	T I	R I		T R	L	Т	R	L	Т	R
No. Lar	nes —	2 3 2	1	2	3 1	2	3	0	2	2	1
LGConfi			R		T R	L		-	L	т	R
Volume	566	2032 36	65 46	55 1	620 382	163	577	145	287	600	165
Lane Wi	dth 12.	0 12.0 12	2.0 12	2.0 1	2.0 12.0	12.0	12.0		12.0	12.0	12.0
RTOR Vo	ol	36	6		38			0			16
Duratic	on 1.0	0 A1	rea Typ	be: A	ll other	areas					
					al Opera	tions					
	Combinati	-	2	3	4		5	6	7		8
EB Lef		A	7		NE		A				
Thr			A			Thru	_	A			
Rig Ped			A			Right Peds	-	A			
WB Lef		А			SE		А				
Thr		A	А			Thru	л	А			
Ric			A			Right	-	A			
Ped						Peds					
NB Ric	ht				EE	8 Right					
SB Rig	ght				WE	8 Right					
Green		20.0 4	47.0		·		11.0) 22.0			
Yellow			4.0				4.0	4.0			
All Red	1	0.0 2	2.0				0.0	2.0			_
		Tnte	arcarti	on D	erformar	CA Summ		cle Len	gth:	120.	0 secs
Appr/	Lane	Adj S			ios	Lane		qqA c	roach	1	
Lane	Group	Flow H					1				
Grp	Capacit	y (s	л (7/C	g/C	Delay	/ LOS	Dela	y LOS	3	
Eastbou	ind										
L	536	3213	1	.11	0.17	280.6	5 F				
Т	1864	4759	1	.15	0.39	309.4	ł F	272.	5 F		
R	580	1482	(0.60	0.39	30.7	С				
Westbou											
L	536	3213).91	0.17	75.0	E		_		
Т	1864	4759).91	0.39	43.1	D	47.6	D		
R	580	1482	(0.62	0.39	31.5	С				
Northbo		2012	,		0 00	FF 2					
	295	3213).58	0.09	55.3 62.6	E E	61.2	Е		
L		1015									
L TR	846	4615	(0.90	0.18	02.0	E	01.2	11		
	846		().90				01.2	12		
TR Southbo L	846 ound 295	3213	1	L.02	0.09	184.0) F				
TR Southbo	846 ound		1) F	155.			

Intersection Delay = 155.1 (sec/veh) Intersection LOS = F

HCS2000: Signalized Intersections Release 4.1

Analyst: DPA Agency: Miami, FL Date: 7/12/2001 Period: MD pk w/imp Project ID: E/W St: NW 36 Street

Inter.: NW 72 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169 N/S St: NW 72 Avenue

				SIC	GNALIZ	свр т	NTCL	SECT.	.TON	SUMMA	RY						
		Eas	tboun			stbou		Ĩ		thbou		So	uthbo	und			
	1	Ŀ	Т	R	L	Т	R		L	Т	R	L	Т	R			
No. Lan		2	_3	1	2	_3	1		2	3	0	2	_2	1			
LGConfi		L	Т	R	L	Т	R		L	TR		L	Т	R	.		
Volume			1564		345	1414				1001	300	703	704	449			
Lane Wi		2.0	12.0		12.0	12.0		0 1	2.0	12.0		12.0	12.0		.0		
RTOR Vo				25			25				0			25			
Duratio	on 1.	.00		Area '													
Phase C	ombinat	ion	1	2	Sig 3	ynal 4		atio	ns	5	6	7		8			
EB Lef			A	2	2	-		вL	eft	A	0	/		0			
Thr			А	A					hru	А		A					
				A A								A A					
Rig				А					light			A					
Ped			7						eds	7	7						
WB Lef			A	7			S		left	A	A	-					
Thr				A					'hru		A	A					
Rig				A					light		A	A					
Ped									eds								
NB Rig									light								
SB Rig	ht						1 170	B R	light								
							1										
Green			14.0	34.0			1			15.0		29					
Green Yellow			14.0 4.0	4.0			1				3.0	4.)				
Green	l						1			15.0 4.0 0.0	3.0 0.0	4. 2.)				
Green Yellow	L		4.0 0.0	4.0 2.0	ation	Dorf	1		-	15.0 4.0 0.0 Cyc	3.0	4. 2.)	0	sec	!s	
Green Yellow All Red			4.0 0.0 In	4.0 2.0			orma	nce	Summ	15.0 4.0 0.0 Cyc ary	3.0 0.0 le Lei	4. 2. ngth:	120.	0	sec	:S	
Green Yellow All Red Appr/	Lane		4.0 0.0 In In	4.0 2.0 ntersed		Perf	orma	nce	Summ	15.0 4.0 0.0 Cyc	3.0 0.0 le Lei	4. 2.	120.	0	sec	:s	
Green Yellow All Red Appr/ Lane	Lane Group		4.0 0.0 In Adj Flow	4.0 2.0		atios	orma	nce L	Summ	15.0 4.0 0.0 Cyc ary Group	3.0 0.0 ele Len	4. 2. ngth: proac) 120.	0	sec	:5	
Green Yellow All Red Appr/ Lane Grp	Lane Group Capac:		4.0 0.0 In Adj Flow	4.0 2.0 ntersed j Sat v Rate	Ra	atios	orma	nce L	Summ	15.0 4.0 0.0 Cyc ary	3.0 0.0 ele Len	4. 2. ngth:) 120.	0	sec	:s 	
Green Yellow All Red Appr/ Lane Grp Eastbou	Lane Group Capaci		4.0 0.0 In Adj Flow (4.0 2.0 htersed j Sat v Rate (s)	Ra v/c	atios g	orma	nce L D	Summ Jane Delay	15.0 4.0 0.0 Cyc ary Group LOS	3.0 0.0 ele Len	4. 2. ngth: proac) 120.	0	sec	25	
Green Yellow All Red Appr/ Lane Grp Eastbou L	Lane Group Capac: Ind 375		4.0 0.0 In Adj Flow (321	4.0 2.0 htersed j Sat v Rate (s)	Ra v/c	atios 9	orma /C .12	nce L D 5	Summ Jane Delay 587.4	15.0 4.0 0.0 Cyc ary Group LOS F	3.0 0.0 ele Ler App Dela	4. 2. ngth: oroacl) 120.	0	sec	:S	
Green Yellow All Red Appr/ Lane Grp Eastbou L T	Lane Group Capac: Ind 375 1348		4.0 0.0 In Adj Flow (321 475	4.0 2.0 htersed j Sat v Rate (s)	Ra v/c	atios 9 9 0 3 0	orma /C .12 .28	nce L D 55	Summ ane Delay 587.4 544.5	15.0 4.0 0.0 Cyc ary Group LOS F F	3.0 0.0 ele Len	4. 2. ngth: oroacl) 120.	0	sec	:s	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R	Lane Group Capac: Ind 375 1348 420		4.0 0.0 In Adj Flow (321	4.0 2.0 htersed j Sat v Rate (s)	Ra v/c	atios 9 9 0 3 0	orma /C .12	nce L D 55	Summ Jane Delay 587.4	15.0 4.0 0.0 Cyc ary Group LOS F	3.0 0.0 ele Ler App Dela	4. 2. ngth: oroacl) 120.	0	sec	2S	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou	Lane Group Capac: Ind 375 1348 420 Ind		4.0 0.0 Adj Flow (321 475 148	4.0 2.0 htersed j Sat v Rate s)	Ra v/c 1.29 1.28 0.61	9 0 9 0 9 0 1 0	orma /C .12 .28 .28	nce L D 5 5 4	Summ Jane Delay 687.4 644.5	15.0 4.0 0.0 Cyc ary Group LOS F F D	3.0 0.0 ele Ler App Dela	4. 2. ngth: oroacl) 120.	0	sec	2S	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L	Lane Group Capac: Ind 375 1348 420 Ind 375		4.0 0.0 In Adj Flow (321 475 148 321	4.0 2.0 sat v Rate s) 32 32	Ra v/c 1.29 1.28 0.61 1.01	9 0 9 0 1 0 1 0	orma /C .12 .28 .28 .12	nce 5 1	Summ Jane Delay 587.4 544.5 60.0	15.0 4.0 0.0 Cyc ary Group LOS F F D F	3.0 0.0 le Len <u>App</u> <u>Dela</u> 500	4. 2. ngth: proac ay LO) 120.	0	sec	:s	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T	Lane Group Capac: Ind 375 1348 420 Ind 375 1348		4.0 0.0 Adj Flow (321 475 148 321 475	4.0 2.0 terseq j Sat v Rate s) 	Ra v/c 1.29 1.28 0.61 1.01 1.15	9 0 3 0 1 0 1 0 5 0	orma /C .12 .28 .28 .12 .28	nce D 5 4 1 3	Summ Jane 99elay 587.4 544.5 50.0 .56.5 327.8	15.0 4.0 0.0 Cyc ary Group LOS F F D F F	3.0 0.0 le Len <u>App</u> <u>Dela</u> 500	4. 2. ngth: oroacl) 120.	0	sec	:s	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420		4.0 0.0 In Adj Flow (321 475 148 321	4.0 2.0 terseq j Sat v Rate s) 	Ra v/c 1.29 1.28 0.61 1.01	9 0 3 0 1 0 1 0 5 0	orma /C .12 .28 .28 .12	nce D 5 4 1 3	Summ Jane Delay 587.4 544.5 60.0	15.0 4.0 0.0 Cyc ary Group LOS F F D F	3.0 0.0 le Len <u>App</u> <u>Dela</u> 500	4. 2. ngth: proac ay LO) 120.	0	sec	2S	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Jund		4.0 0.0 In Adj Flow (321 475 148 321 475 148	4.0 2.0 htersec j Sat v Rate s) 32 33 32 33 32 33 32	Ra v/c 1.29 1.28 0.61 1.01 1.15 0.66	9 0 9 0 3 0 1 0 5 0 5 0	orma /C .12 .28 .28 .12 .28 .28 .28	nce L D 5 4 1 3 4	Summ Jane Delay 587.4 544.5 50.0 556.5 527.8 1.8	15.0 4.0 0.0 Cyc ary Group LOS F F D F F D	3.0 0.0 le Len <u>App</u> <u>Dela</u> 500	4. 2. ngth: proac ay LO) 120.	0	sec	:5	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Jund 402		4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 475	4.0 2.0 htersed j Sat v Rate s) 32 32 32 32 32 32 32 32	Ra v/c 1.29 1.28 0.61 1.01 1.19 0.66 1.10	atios 9 0 3 0 L 0 5 0 5 0	orma /C .12 .28 .28 .12 .28 .28 .28 .28	nce L D 5 5 4 1 3 4 2	Summ Jane 9elay 687.4 544.5 50.0 56.5 27.8 275.8	15.0 4.0 0.0 Cyc ary Group LOS F F D F F D F F D	3.0 0.0 le Len Dela 500 262	4. 2. ngth: proac ay LO) 120.	0	sec	:s	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Jund		4.0 0.0 In Adj Flow (321 475 148 321 475 148	4.0 2.0 htersed j Sat v Rate s) 32 32 32 32 32 32 32 32	Ra v/c 1.29 1.28 0.61 1.01 1.15 0.66	atios 9 0 3 0 L 0 5 0 5 0	orma /C .12 .28 .28 .12 .28 .28 .28	nce L D 5 5 4 1 3 4 2	Summ Jane Delay 587.4 544.5 50.0 556.5 527.8 1.8	15.0 4.0 0.0 Cyc ary Group LOS F F D F F D F F D	3.0 0.0 le Len Dela 500 262	4. 2. ngth: proac ay LO) 120.	0	sec	:5	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Und 402 1110		4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 475	4.0 2.0 htersed j Sat v Rate s) 32 32 32 32 32 32 32 32	Ra v/c 1.29 1.28 0.61 1.01 1.19 0.66 1.10	atios 9 0 3 0 L 0 5 0 5 0	orma /C .12 .28 .28 .12 .28 .28 .28 .28	nce L D 5 5 4 1 3 4 2	Summ Jane 9elay 687.4 544.5 50.0 56.5 27.8 275.8	15.0 4.0 0.0 Cyc ary Group LOS F F D F F D F F D	3.0 0.0 le Len Dela 500 262	4. 2. ngth: proac ay LO) 120.	0	sec	2S	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L TR	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Und 402 1110		4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 475	4.0 2.0 sat 7 Rate 5 3 3 3 3 3 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2	Ra v/c 1.29 1.28 0.61 1.01 1.19 0.66 1.10	9 0 9 0 8 0 1 0 1 0 5 0 5 0 0 0 9 0 9 0	orma /C .12 .28 .28 .12 .28 .28 .28 .28	nce D 5 5 4 1 3 4 2 5	Summ Jane 9elay 687.4 544.5 50.0 56.5 27.8 275.8	15.0 4.0 0.0 Cyc Group LOS F F D F F D F F	3.0 0.0 le Len Dela 500 262	4. 2. ngth: proac ay LO) 120.	0	sec	:5	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R Southbo	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Ind 402 1110 Vund		4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 475 148 321	4.0 2.0 atersed j Sat v Rate s) 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 32 33 34	Ra v/c 1.29 1.28 0.61 1.01 1.15 0.66 1.10 1.29	9 0 9 0 3 0 1 0 1 0 5 0 5 0 0 0 9 0	orma /C .12 .28 .28 .12 .28 .28 .28 .13 .24	nce 	Summ Jane Delay 587.4 544.5 0.0 56.5 27.8 1.8 275.8 571.6	15.0 4.0 0.0 Cyc Group LOS F F D F F D F F	3.0 0.0 le Len Dela 500 262	4. 2. proac ay LO .0 F .6 F) 120.	0	sec	:s	
Green Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L TR Southbo	Lane Group Capac: Ind 375 1348 420 Ind 375 1348 420 Jund 402 1110 ound 643		4.0 0.0 In Adj Flow (321 475 148 321 475 148 321 459 321	4.0 2.0 htersec j Sat v Rate s) 	Ra v/c 1.29 1.28 0.61 1.01 1.15 0.66 1.10 1.29 1.20	9 0 9 0 1 0 1 0 1 0 5 0 5 0 0 0 5 0 0 0 5 0	orma /C .12 .28 .28 .12 .28 .28 .13 .24 .20	nce 	Summ. Jane Delay 587.4 544.5 0.0 .56.5 527.8 1.8 275.8 571.6	15.0 4.0 0.0 Cyc ary Group LOS F F D F F D F F D F F D	3.0 0.0 le Len 0 App 0 Dela 500 262 501	4. 2. proac ay LO .0 F .6 F) 120.	0	sec	:s	

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM pk w/imp Project ID: E/W St: NW 36 Street Inter.: NW 72 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 72 Avenue

_____SIGNALIZED INTERSECTION SUMMARY____

	Ea	stbou	nd	We	stbou	nd	No:	rthbo	und	So	uthbo	und	
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
							 						_
No. Lanes	2	3	1	2	3	1	2	3	0	2	2	1	
LGConfig	L	Т	R	L L	Т	R	L	TR		L	Т	R	
Volume	482	1838	84	233	1553	255	286	808	333	625	854	503	

Lane Wid RTOR Vol		L2.0 12.0 8	12.0 12	.0 12.0 20	12.0	12.0 0		2.0 1	.2.0 12 20		
Duration	1.00	Area	Type: Al Signa	l other l Operat							
Phase Co	mbination	1 2	3	4		5	6	7	8		-
EB Left	-	A		NB	Left	А					
Thru		A			Thru		A				
Righ		A			Right		A				
Peds		_			Peds	_					
WB Left		A		SB	Left	A					
Thru		A			Thru		A				
Righ Peds		A			Right Peds		A				
NB Righ				EB	Right						
SB Righ				WB	Right						
Green		21.0 52.0		WD	Right	22.0	45.0				
Yellow		1.0 4.0				4.0	4.0				
All Red	C	0.0 2.0				0.0	2.0				
						Cycl	e Lengt	:h: 1	60.0	secs	
			ction Pe	rformanc	e Summa	ary					_
I I '	Lane	Adj Sat	Rati	os	Lane (Group	Appro	bach			
	-	Flow Rate									
Grp	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	LOS			
Eastboun	d										-
L	426	3242	1.22	0.13	480.7	F					
T	1561	4803	1.27	0.32	538.0	F	510.6	F			
R	486	1495	0.17	0.32	38.7	D					
Westboun	ıd										
L	426	3242	0.59	0.13	67.6	Е					
Т	1561	4803	1.07	0.32	195.4	F	163.1	F			
R	486	1495	0.52	0.32	44.9	D					
Northbou											
L	446	3242	0.69	0.14	70.4	E		_			
TR	1292	4593	0.95	0.28	76.3	Е	75.1	Ε			
Southbou	ınd										
L	446	3242	1.51	0.14	993.0	F					
T	940	3343	0.98	0.28	96.6	F	482.3	F			
R	420	1495	1.24	0.28	503.2	F	102.0	-			
		ion Delay				-	ction I	LOS =	F		
		1									

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM pk w/imp Project ID: E/W St: NW 36 Street

Inter.: NW 87 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

			SI	GNALIZ	ZED I	NTERSE	CTION	SUMM	ARY				
	Eas	stbou	nd	Wes	stbou	nd	No	rthbo	und	Sou	uthbo	und	
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Lanes	2	3	0	2	3	0	2	3	0	2	3	1	
LGConfig	L	TR		L	TR		L	TR		L	Т	R	
Volume	524	1794	547	363	828	111	260	734	398	153	444	169	
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	12.0	
RTOR Vol			0			0			0			17	
Duration	1.00		Area '			other Operat							
Phase Combin	natior	ı 1	2	3	4	Ĩ		5	6	7		8	
EB Left		А				NB	Left	А					

R P WB T R P NB R	W	A A A 26.0 4.0 0.0 2.0		SB EB WB	Thru Right Peds Left Thru Right Right Right	A 11.0 4.0 0.0 Cvcl	4.0 2.0	h: 145.0	secs
		Intersec	tion Perfo	ormanc	e Summa				
Appr/ Lane		Adj Sat Flow Rate	Ratios		Lane (Group	Appro	bach	
Grp	Capacity		v/c g/	/C	Delay	LOS	Delay	LOS	
Eastb	ound								
L	598	3335	0.92 0.	.18	85.2	F			
TR	2038	4767	1.21 0.	.43	422.8	F	361.0	F	
Westb	ound								
L	598	3335		.18	57.5	E		_	
TR	2075	4852	0.48 0.	.43	30.0	С	37.7	D	
North									
L	253	3335		.08	281.2		700 F	-	
TR	839	4680	1.42 0.	.18	824.0	F	722.5	F	
South									
L	253	3335		.08	70.4	E		_	
Т	886	4940		.18	54.5	D	58.4	Е	
R	276	1538		.18	57.6	E		00 5	
	Interse	ction Delay	= 338.2 (8	sec/ve	en) Li	nterse	ction I	OS = F	

Analyst: DPA Agency: Miami, FL Date: 7/17/2001 Period: MD pk w/imp Project ID: E/W St: NW 36 Street

Inter.: NW 87 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

			SI	GNALI	ZED II	NTERSE	CTION	SUMM	ARY				
	Ea	stbou	nd	We	stbou	nd	No	rthbo	und	Southbound			
	L	Т	R	L	Т	R	L	Т	R	L	Т	R	
No. Lanes	2	3	0	2	3	0	2	3	0	2	3	1	
LGConfig	L	TR		L	TR		L	TR		L	Т	R	
Volume	426	1109	409	435	982	118	537	645	345	162	659	226	
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	12.0	
RTOR Vol			0			0			0			20	

Duration	1.00	Area 🗅	Гуре:	All	other	areas	
			Sig	gnal	Operat	tions	

				_019110		ocrac.	TOUID				
Pha	se Combination	1	2	3	4			5	6	7	8
EΒ	Left	А				NB	Left	A	A		
	Thru		A			1	Thru		A	A	
	Right		A			1	Right		A	A	
	Peds					1	Peds				
WB	Left	A				SB	Left	A			
	Thru		A			1	Thru			A	
	Right		A			1	Right			А	
	Peds					1	Peds				
NB	Right					EB	Right				
	-						-				

SB Rig	ht			WB	Right			
Green		16.0 36.0					18.0	
Yellow		4.0 4.0			4.	0 4.0	4.0	
All Red		0.0 2.0			0.	0.0	2.0	
					C	Cycle Leng	gth: 110.0	secs
		Interse	ction Pe	rformanc	e Summary			
Appr/	Lane	Adj Sat	Rati	os	Lane Gro	oup App	roach	
Lane	Group	Flow Rate						
Grp	-	(s)		g/C	Delay LC	DS Dela	V LOS	
		(-)	., .	5, 5			2	
Eastbou	nd							
L	485	3335	0.92	0.15	78.5 E	2		
TR	1551	4740	1.03	0.33	118.1 F	109.4	4 F	
Westbou	nd							
L	485	3335	0.94	0.15	87.4 F	7		
TR	1591	4861	0.73	0.33	34.4		D	
	1071	1001	0.75	0.00	5111 0		2	
Northbo	und							
L	606	3335	0.93	0.18	73.8 E			
TR	1234	4682	0.84	0.26	44.2 I		D	
110	1234	1002	0.01	0.20	11.2 L	5 54.0	D	
Southbo	und							
L	273	3335	0.63	0.08	53.5 I)		
T	808	4940	0.86	0.16	54.9 I		Е	
R							<u>с</u>	
ĸ	252	1538	0.86			-	TOO T	
	Incerse	ction Delay	= /1./	(sec/ve	n) Inte	ersection	TO2 = E	

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM pk w/imp Project ID: E/W St: NW 36 Street Inter.: NW 87 Ave and NW 36 St Area Type: All other areas Jurisd: Year : 00169

			SI	GNALI	ZED II	NTERSE	CTION	SUMM	ARY			
	Eas	stbou	nd	Wes	stbou	nd	No	thbo	und	Sou	lthbo	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	2	3	0	2	3	0	2	3	0	2	3	1
LGConfig	L	TR		L	TR		L	TR		L	Т	R
Volume	239	789	340	473	1209	113	533	428	218	157	840	440
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0		12.0	12.0	12.0
RTOR Vol			0			0			0			44

Dur	ation	1.00	Area 🖯	Type: All Siqnal								
Pha	se Combi	nation 1	2		4			5	6	7	8	
EB	Left	A				NB	Left	А				
	Thru			A			Thru		A			
	Right			A			Right		A			
	Peds						Peds					
WB	Left	A	A			SB	Left	A				
	Thru		A	A			Thru		A			
	Right		A	A			Right		A			
	Peds						Peds					
NB	Right					EΒ	Right					
SB	Right					WB	Right					
Gre	en	13.0	5.0	37.0				24.0	36.0			
Yel	low	4.0	3.0	4.0				4.0	4.0			
All	Red	1.0	1.0	2.0				0.0	2.0			
								Cycl	e Lengt	h: 140	.0	secs
		Ir	ntersed	ction Per	form	nanc	e Summa	ary				
App Lan			j Sat w Rate	Ratio	S		Lane (Group	Appro	ach		

Grp	Capacity	(s)	v/c	g/C	Delay	LOS	Delay	/ LOS	
Eastbo	ound								
L	313	3367	0.81	0.09	78.1	Е			
TR	1259	4762	0.94	0.26	69.2	Е	70.7	Ε	
Westbo	ound								
L	553	3367	0.90	0.16	79.5	Ε			
TR	1618	4924	0.86	0.33	49.2	D	57.2	Ε	
Northk	oound								
L	577	3367	0.97	0.17	109.2	F			
TR	1218	4736	0.56	0.26	45.7	D	74.4	Ε	
Southk	oound								
L	577	3367	0.29	0.17	50.8	D			
Т	1283	4988	0.69	0.26	48.5	D	90.0	F	
R	399	1553	1.05	0.26	193.3	F			
	Intersect	ion Delay	= 71.9	(sec/ve	eh) In	terse	ection	LOS = E	

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM peak hour w/imp Project ID: E/W St: NW 41 Street Inter.: NW 41 St / NW 107 Ave Area Type: All other areas Jurisd: Year : 00169

			SI	GNALI	ZED II	NTERSE	CTION	SUMM	ARY			
	Eas	stbour	nd	We	stbou	nd	No	rthbo	und	So	uthbou	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	1	3	0	2	3	0	1	2	1	1	2	0
LGConfig	L	TR		L	TR		L	LT	R	L	LTR	
Volume	94	1473	294	284	469	100	57	201	210	301	368	69
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vol			0			0			20			0

Dur	ation	1.00		Area T		All of nal Op							
Dha		binatior	1	2	3	11a1 Or 4	Jerac	10115	5	6	7	8	
EB	Left	DINACIO	A	2	5	Т	NB	Left	5	A	,	0	
	Thru		11	А				Thru		A			
	Right			A				Right		A			
	Peds			X				Peds		X			
WB	Left		А	21			SB	Left	А	21			
пD	Thru		11	А				Thru					
	Right			A				Right					
	Peds			X				Peds	л	х			
NB	Right		А	21			EB	Right		24			
SB	Right		л				WB	Right					
Gre			16.0	58.0				Rigiic	31.0	14.0			
	low		3.0	4.0					4.0	4.0			
	Red		0.0	2.0					2.0	2.0			
ATT	ncu		0.0	2.0						e Lengt	-h: 1	40 0	secs
			Tn	tersec	tion	Perfo	rmanc	e Summa		C LICITY		10.0	BCCB
App	r/ I	ane		Sat		tios.	Linaric			Appro	hach		
Lan	,	roup		7 Rate	100	.0105		Lunc (JIOUP	11PP1 (Jacii		
Grp		apacity		s)	v/c	q/(7	Delay	T.OS	Delay	20.1	_	
σrΡ	C	apacity	(57	v/c	9/1	-	Deray	ЦОр	Deruy	ЦОр		
Eas	tbound												
L		195	170	13	0.53	0.1	11	61.3	Е				
TR		1977	477		0.99			75.5	Ē	74.8	Е		
			1,,	-		0.			-		-		
Wes	tbound	l											
L		377	330	3	0.84	0.3	11	78.2	Е				
		-		-									

TR	1974	4764	0.32	0.41	27.8	С	44.6	D
Northbou	und							
L	170	1703	0.37	0.10	60.3	Ε		
LT	341	3406	0.65	0.10	65.2	Е	56.6	Е
R	392	1524	0.54	0.26	46.3	D		
Southbou	und							
L	377	1703	0.89	0.22	79.7	Е		
LTR	736	3325	0.66	0.22	51.9	D	63.3	Е
	Intersect	tion Delay	= 63.9	(sec/ve	h) In	terse	ction I	JOS = E

Analyst: DPA Agency: Miami, FL Date: 7/19/2001 Period: MD pk w/imp Project ID: E/W St: NW 41 Street

Inter.: NW 41 St / NW 107 Ave
Area Type: All other areas
Jurisd:
Year : 00169

N/S St: NW 107 Avenue

SIGNALIZED INTERSECTION SUMMARY

			DT	01411111			C I I OI1	001111				
	Ea	stbou	nd	Westbound			Not	rthbo	und	Southbound		
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	1	3	0	2	3	0	1	2	1	1	2	0
LGConfig	L	TR		L	TR		L	LT	R	L L	LTR	
Volume	94	561	213	457	701	156	287	351	432	267	449	94
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vol			0			0			30			0

Duration	1.00	Area Type: All other areas

Durut			Oa	Signa	$1 0 n e^{\gamma}$	ations					
Phase	e Combina	tion 1	2	3	4 4	actons	5	6	7	8	
	Left	A	-	5	-	IB Left	5	A	,	U	
	Thru			A		Thru		A			
	Right			A		Right		A			
	Peds			х		Peds		Х			
WB I	Left	А	A		5	B Left	А				
1	Thru		A	A		Thru	А				
F	Right		A	A		Right	А				
	Peds			Х		Peds		Х			
NB F	Right				E	B Right					
SB F	Right				N I	IB Right					
Greer		11.0	5.0	21.0		-	22.0	27.0			
Yello	WC	3.0	3.0	4.0			4.0	4.0			
All F	Red	0.0	0.0	2.0			2.0	2.0			
							Cycl	.e Lengt	th: 11	0.0	secs
		I	nterse	ction Pe	erforma	ince Summa	ary				
Appr/	/ Lane	Ad	j Sat	Rat	ios	Lane (Group	Appro	bach		
Lane	Group) Flo	w Rate							_	
Grp	Capac	ity	(s)	v/c	g/C	Delay	LOS	Delay	LOS		
	bound										
L	170		03	0.61	0.10	54.0	D				
TR	896	46	91	0.96	0.19	75.5	E	73.1	E		
Westk	bound										
L	571	33	03	0.89	0.17	63.7	Ε				
TR	1255	47	60	0.76	0.26	40.1	D	48.3	D		
North	hbound										
L	418	17	03	0.76	0.25	47.1	D				
LT	836		06	0.47	0.25	35.8	D	187.5	F		
R	374		24	1.20	0.25	420.2	-	10/10	-		
	hbound	10		1.10	0.20	12012	-				
00000											

L LTR	341 664	1703 3318	0.87 0.91	0.20	68.3 63.4		65.0	E
	Intersect	ion Delay	= 92.9	(sec/ve	eh)	Interse	ection 1	LOS = F

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM peak hour w/imp Project ID: E/W St: NW 41 Street Inter.: NW 41 St / NW 107 Ave
Area Type: All other areas
Jurisd:
Year : 00169

8

N/S St: NW 107 Avenue

			SI	GNALI	ZED II	NTERSE	CTION	SUMM	ARY			
	Ea	stbou	nd	Wes	stbou	nd	No	rthbo	und	So	uthbo	und
	L	Т	R	L	Т	R	L	Т	R	L	Т	R
No. Lanes	1	3	0	2	3	0	1	2	1	1	2	0
LGConfig	L	TR		L	TR		L	LT	R	L	LTR	
Volume	41	336	138	613	1667	129	251	263	254	233	504	118
Lane Width	12.0	12.0		12.0	12.0		12.0	12.0	12.0	12.0	12.0	
RTOR Vol			0			0			25			0

Duration	1.00	Area 1							
			Sign	nal Op	perat	ions			
Phase Comb	ination 1	2	3	4			5	6	7
EB Left	A				NB	Left		A	
These			7			There		7	

EB	Lef	t	A				NB	Left		A				
	Thr	u			A			Thru		A				
	Rig	ht			A			Right		A				
	Ped				Х			Peds		Х				
WB	Lef		А	А			SB	Left	А					
112	Thr			A	А			Thru	A					
	Rig			A	A			Right	A					
	Ped				x			Peds		Х				
NB	Rig		А	А	21		EB	Right		21				
SB	Rig		11	11			WB	Right						
Gree		IIC .	6.0	30.0	18.0			Rigiic	29.0	24.0				
Yell			4.0	4.0	4.0				4.0	4.0				
All			1.0	1.0	2.0				2.0	2.0				
ALT	neu		1.0	1.0	2.0						h: 135.	0	secs	
			Тт	torgog	tion Pe	- refor	rmana	o Cumma				0	Secs	
7 nnr	~ /	Lane		j Sat	Rati		Lillanc	Lane (ach			-
Appr Lane		Group		, Sal Rate	Kat.	LOS		Lane	JIOup	Appro	acii			
	-	Capacity			v/c	~ / (-	Delay	TOC	Delay	TOC			
Grp		Capacity	(s)	V/C	g/(-	Delay	ПО2	Deray	ТО2			
East	hou	nd												
L		77	173	86	0.57	0.0	14	73.4	Е					
TR		636	477		0.80	0.1		64.4	E	65.1	Е			
IIC		050		0	0.00	0.1	LJ	01.1	13	03.1	12			
West	bou	nd												
L		1023	336	57	0.64	0.3	30	42.1	D					
TR		1937	493		1.00	0.1		79.0	Ē	69.6	Е			
110		1937	175	, 1	1.00	0.		,,,,,		09.0	-			
Nort	hbo	und												
L		309	173	36	0.87	0.3	18	82.8	F					
LT		617	347	/1	0.46	0.3	18	50.2	D	51.4	D			
R		817	155	3	0.30	0.5	53	18.2	В					
Sout	.hbo		200	-	2.00	5			-					
L	0	373	173	36	0.67	0.2	21	53.5	D					
LTR		724	337		0.92	0.2		74.8	Ē	69.0	Е			
		, <u> </u>	557	-	2.2	•••				52.0				

Intersection Delay = 66.0 (sec/veh) Intersection LOS = E

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: AM pk w/imp Project ID: E/W St: NW 12 Street Inter.: NW 87 Ave and NW 12 St Area Type: All other areas Jurisd: Year : 00169

N/S St: NW 87 Avenue

		SIC	JNALLLL	U INIERSE	CTION SUMM	ARI				
	Ea	stbound		bound	Northbo		Sou	thbou	ind	
	L	T R	L '	Г R	L T	R	L	Т	R	
No. Lan	les 1	1 1	2	2 1	1 2	1	1	3	0	-
LGConfi		T R		г r	LT	R	L	TR		
Volume	26	373 69		37 498		1958	1	466	119	
Lane Wi		12.0 12.0		2.0 12.0	12.0 12.0		12.0		117	
RTOR Vo		7	12.0 1	30	12.0 12.0	30	12.0	12.0	0	
RIOR VO	-	7		50		50			0	
Duratio	on 1.00	Area 3		ll other al Operat						
Phase C	ombinatio	n 1 2	SIGII	4	5	6	7	8	8	
EB Lef		A	5	- NB	Left A	0	,		,	
Thr		A			Thru	A	А			
Riq		A			Right	A	A			
Ped		A			Peds	А	A			
WB Lef		А								
				SB	Left A Thru		7			
Thr		A					A			
Rig		A			Right		A			
Ped		_			Peds					
NB Rig		A		EB	Right A					
SB Rig	nt			WB	Right A					
		7.0 19.0			11.			C		
		3.0 4.0			3.0	0.0	4.0	C		
	l				3.0 1.0	0.0 0.0	4.0 2.0			
Yellow	L	3.04.00.02.0		F	3.0 1.0 Cy	0.0 0.0 cle Ler	4.0 2.0) s	ecs
Yellow All Red		3.0 4.0 0.0 2.0 Intersec			3.0 1.0 Cy ce Summary_	0.0 0.0 cle Ler	4.0 2.0 ngth:) s	ecs
Yellow All Red Appr/	Lane	3.0 4.0 0.0 2.0 Intersec Adj Sat	ction P Rat		3.0 1.0 Cy	0.0 0.0 cle Ler	4.0 2.0) s	ecs
Yellow All Red Appr/ Lane	Lane Group	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate	Rat	ios	3.0 1.0 Cy ce Summary_ Lane Grou	0.0 0.0 cle Ler p App	4.0 2.0 ngth:	130.0) s	ecs
Yellow All Red Appr/ Lane	Lane	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate			3.0 1.0 Cy ce Summary_	0.0 0.0 cle Ler p App	4.0 2.0 ngth:	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou	Lane Group Capacity Ind	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s)	Rat. v/c	ios g/C	3.0 1.0 Cy se Summary_ Lane Grou Delay LOS	0.0 0.0 cle Ler p App	4.0 2.0 ngth:	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L	Lane Group Capacity nd 94	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752	Rat.	ios 0.05	3.0 1.0 Cy se Summary_ Lane Grou Delay LOS 60.8 E	0.0 0.0 ccle Ler p App Dela	4.0 2.0 ngth: proach	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T	Lane Group Capacity nd 94 270	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845	Rat v/c	ios g/C 0.05 0.15	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F	0.0 0.0 ccle Ler p App Dela	4.0 2.0 ngth:	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R	Lane Group Capacity nd 94 270 434	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752	Rat.	ios 0.05	3.0 1.0 Cy se Summary_ Lane Grou Delay LOS 60.8 E	0.0 0.0 ccle Ler p App Dela	4.0 2.0 ngth: proach	130.0) 5	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R	Lane Group Capacity nd 94 270 434 nd	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568	Rat. v/c 0.29 1.46 0.15	ios g/C 0.05 0.15 0.28	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D	0.0 0.0 ccle Ler p App Dela	4.0 2.0 ngth: proach	130.0) 5	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L	Lane Group Capacity nd 94 270 434	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845	Rat v/c	ios g/C 0.05 0.15 0.28 0.05	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS	130.0) 5	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L	Lane Group Capacity nd 94 270 434 nd	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568	Rat. v/c 0.29 1.46 0.15	ios g/C 0.05 0.15 0.28 0.05 0.15	3.0 1.0 Cy E Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T	Lane Group Capacity nd 94 270 434 und 183	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400	Rat. v/c 0.29 1.46 0.15 0.95	ios g/C 0.05 0.15 0.28 0.05	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R R	Lane Group Capacity Ind 94 270 434 Ind 183 512 434	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505	Rat. v/c 0.29 1.46 0.15 0.95 0.90	ios g/C 0.05 0.15 0.28 0.05 0.15	3.0 1.0 Cy E Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo	Lane Group Capacity Ind 94 270 434 Ind 183 512 434	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505	Rat. v/c 0.29 1.46 0.15 0.95 0.90	ios g/C 0.05 0.15 0.28 0.05 0.15	3.0 1.0 Cy E Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L	Lane Group Capacity nd 94 270 434 183 512 434 und 183 512 434	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505 1568 1752	Rat. v/c 0.29 1.46 0.15 0.95 0.90 1.14 2.53	ios g/C 0.05 0.15 0.28 0.05 0.15 0.28 0.28 0.28	3.0 1.0 Cy E Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E 322.5 F	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T	Lane Group Capacity Ind 94 270 434 IND 183 512 434 Vund 148 1995	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505 1568 1752 3505	Rat. v/c 0.29 1.46 0.15 0.95 0.90 1.14 2.53 1.34	ios g/C 0.05 0.15 0.28 0.05 0.15 0.28 0.28 0.28 0.08 0.57	3.0 1.0 Cy E Summary Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E 322.5 F	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS .4 F .9 F	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R	Lane Group Capacity Ind 94 270 434 ind 183 512 434 yund 148 1995 1049	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505 1568 1752	Rat. v/c 0.29 1.46 0.15 0.95 0.90 1.14 2.53	ios g/C 0.05 0.15 0.28 0.05 0.15 0.28 0.28 0.28	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E 322.5 F 651.4 F	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS .4 F .9 F	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R Southbo	Lane Group Capacity nd 94 270 434 nd 183 512 434 434 148 1995 1049 ound	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505 1568 1752 3505 1568	Rat. v/c 0.29 1.46 0.15 0.95 0.90 1.14 2.53 1.34 1.93	ios g/C 0.05 0.15 0.28 0.05 0.15 0.28 0.28 0.28 0.08 0.57 0.67	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E 322.5 F 651.4 F F	0.0 0.0 cle Ler p App Dela 	4.0 2.0 ngth: proach ay LOS .4 F .9 F	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R Southbo L	Lane Group Capacity and 94 270 434 183 512 434 148 1995 1049 ound 148	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505 1568 1752 3505 1568 1752	Rat. v/c 0.29 1.46 0.15 0.95 0.90 1.14 2.53 1.34 1.93 0.91	ios g/C 0.05 0.15 0.28 0.05 0.15 0.28 0.08 0.57 0.67 0.08	3.0 1.0 Cy e Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E 322.5 F 651.4 F F 133.2 F	0.0 0.0 cle Ler <u>p App</u> <u>Dela</u> 734	4.0 2.0 ngth: proach ay LOS .4 F .9 F F	130.0) s	ecs
Yellow All Red Appr/ Lane Grp Eastbou L T R Westbou L T R Northbo L T R Southbo	Lane Group Capacity nd 94 270 434 nd 183 512 434 434 148 1995 1049 ound	3.0 4.0 0.0 2.0 Intersec Adj Sat Flow Rate (s) 1752 1845 1568 3400 3505 1568 1752 3505 1568	Rat. v/c 0.29 1.46 0.15 0.95 0.90 1.14 2.53 1.34 1.93	ios g/C 0.05 0.15 0.28 0.05 0.15 0.28 0.28 0.28 0.08 0.57 0.67	3.0 1.0 Cy te Summary_ Lane Grou Delay LOS 60.8 E 896.3 F 35.6 D 149.4 F 77.8 E 322.5 F 651.4 F F	0.0 0.0 cle Ler <u>p App</u> <u>Dela</u> 734	4.0 2.0 ngth: proach ay LOS .4 F .9 F	130.0) s	ecs

HCS2000: Signalized Intersections Release 4.1

Analyst: DPA Agency: Miami, FL Date: 7/18/2001 Inter.: NW 87 Ave and NW 12 St Area Type: All other areas Jurisd: Period: MD pk w/imp Project ID: E/W St: NW 12 Street

N/S St: NW 87 Avenue

Eastbound Westbound Northbound Southbound L T R L T R L T R	
Lanes 1 1 2 2 1 1 2 0 Carifia L T D L D <td< td=""><td></td></td<>	
Config L T R L T R L T R L T R L T lume 100 301 215 562 777 438 273 1361 492 173 1227 293	
lume 100 301 215 562 777 438 273 1361 492 173 1227 293 ne Width 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0	
OR Vol 20 12.0 <th< td=""><td></td></th<>	
ration 1.00 Area Type: All other areas Signal Operations	
ase Combination 1 2 3 4 5 6 7 8	
Left A NB Left A A	
Thru A A Thru A A	
Right A A Right A A	
Peds Peds	
Left A A SB Left A	
Thru A A Thru A	
Right A A Right A Peds Peds	
Right A A EB Right A A Right WB Right	
een 12.0 5.0 23.0 13.0 5.0 45.0	
llow 3.0 3.0 4.0 3.0 4.0 4.0	
l Red 0.0 1.0 2.0 0.0 1.0 2.0	
	secs
Intersection Performance Summary	
pr/ Lane Adj Sat Ratios Lane Group Approach	
ne Group Flow Rate	
stbound	
162 1752 0.68 0.09 68.6 E	
326 1845 1.02 0.18 168.7 F 106.2 F	
603 1568 0.35 0.38 28.9 C	
stbound	
523 3400 1.18 0.15 403.0 F	
863 3505 0.99 0.25 100.6 F 267.0 F 386 1568 1.18 0.25 394.7 F	
386 1568 1.18 0.25 394.7 F rthbound	
283 1752 1.06 0.16 231.3 F 1483 3505 1.01 0.42 93.0 F 93.5 F	
1483 3505 1.01 0.42 93.0 F 93.5 F	
1483 3505 1.01 0.42 93.0 F 93.5 F 977 1568 0.53 0.62 14.3 B	
1483 3505 1.01 0.42 93.0 F 93.5 F 977 1568 0.53 0.62 14.3 B uthbound	
1483 3505 1.01 0.42 93.0 F 93.5 F 977 1568 0.53 0.62 14.3 B uthbound 175 1752 1.09 0.10 297.1 F	
1483 3505 1.01 0.42 93.0 F 93.5 F 977 1568 0.53 0.62 14.3 B uthbound	

HCS2000: Signalized Intersections Release 4.1

Analyst: DPA Agency: Miami, FL Date: 8/8/2001 Period: PM pk w/imp Project ID: E/W St: NW 12 Street Inter.: NW 87 Ave and NW 12 St Area Type: All other areas Jurisd: Year : 00169

 		SI	GNALI	ZED I	NTERS	ECTION	SUMM	IARY				
Ea	stbou	Ind	Westbound			No	Northbound			Southbound		
L	Т	R	L	Т	R	L	Т	R	L	Т	R	

LGConfigLTRLTRLTRVolume6222029470398930684859274691841564Lane Width12.012.012.012.012.012.012.012.012.012.012.0RTOR Vol3030250	
Duration 1.00 Area Type: All other areas 	
Phase Combination 1 2 3 4 5 6 7 8	
EB Left A NB Left A	
Thru A Thru A	
Right A Right A Peds Peds	
WB Left A A SB Left A A	
Thru A A Thru A A	
Right A A Right A A	
Peds Peds	
NB Right A A EB Right A	
SB Right A A	
Green 8.0 12.0 16.0 8.0 17.0 32.0	
Yellow 3.0 4.0 4.0 3.0 4.0 4.0	
All Red 1.0 2.0 2.0 1.0 2.0 2.0	
Cycle Length: 125.0 secs Intersection Performance Summary	
Appr/ Lane Adj Sat Ratios Lane Group Approach	
Lane Group Flow Rate	
Grp Capacity (s) V/c g/C Delay LOS Delay LOS	
Eastbound	
L 113 1770 0.58 0.06 64.1 E	
T 238 1863 0.97 0.13 146.8 F 91.2 F	
R 380 1583 0.73 0.24 51.2 D	
Westbound L 659 3433 1.12 0.19 294.4 F	
T 963 3539 1.08 0.27 213.0 F 214.3 F	
R 874 1583 0.33 0.55 15.6 B	
Northbound	
L 113 1770 0.78 0.06 91.5 F	
T 906 3539 1.00 0.26 104.1 F 85.5 F	
R 785 1583 0.33 0.50 19.3 B	
Southbound	
L 411 1770 0.18 0.23 38.7 D	
TR 2159 4906 1.17 0.44 351.5 F 342.8 F	
Intersection Delay = 230.1 (sec/veh) Intersection LOS = F	

Appendix D

Suggested Traffic Design Standards

Design Standards Exhibits for Design Standards **Design Standards**

This is a summary of information based on the reference materials located in Appendix F.

Because of their size and operating characteristics, trucks can be the control vehicles in roadway design. Characteristics such as offtracking, acceleration, braking performance, driver eye height, and stability have a major impact on design decisions.

Turning Radii and Offtracking

Two factors that affect the maneuverability of large trucks are turning radii and offtracking. Offtracking occurs when the rear wheels of a vehicle do not follow the same path as the front wheels. There are two types of offtracking, low speed and high speed.

In low-speed offtracking, the rear wheels of the truck follow a path inside of the path of the front wheels. Low-speed offtracking is an important consideration in the design of at-grade intersections. High-speed offtracking is the opposite of low-speed offtracking in that the rear wheels of the truck follow a path outside of the path of the front wheels, that is, the rear of the truck moves toward the outside of the curve. High-speed offtracking is important in determining the need for pavement widening on horizontal curves.

Acceleration Characteristics

Truck acceleration characteristics primarily depend on gross vehicle weight, engine horsepower, and the grade of the roadway. Acceleration characteristics of trucks are important in the design of acceleration lanes, climbing lanes, and determining sight distance requirements at stop-controlled intersections and railroad crossings.

Stopping Sight Distance

The distance required to stop a vehicle is a function of the driver, the vehicle, and the pavement. Important driver characteristics include perception-reaction time, driver eye height, and driver experience in emergency braking situations. Important vehicle characteristics include type of brakes (conventional or antilock); brake adjustment (especially critical for trucks), truck load, and tire tread depth. Frictional characteristics of the pavement are also important. Stopping sight distance is a critical element in the design of vertical curves, horizontal curves, intersections, and location of traffic control devices.

Rollover Stability

Rollover threshold is defined as the maximum lateral acceleration a vehicle can sustain without rolling over. Rollover threshold has a major impact on the design of horizontal curves. A typical passenger car has a rollover threshold of approximately 1.2g. Fully loaded trucks can have a rollover threshold as low as 0.24g. A value of 0.30g has been suggested for use in the design of horizontal curves to accommodate large trucks.

Horizontal Alignment

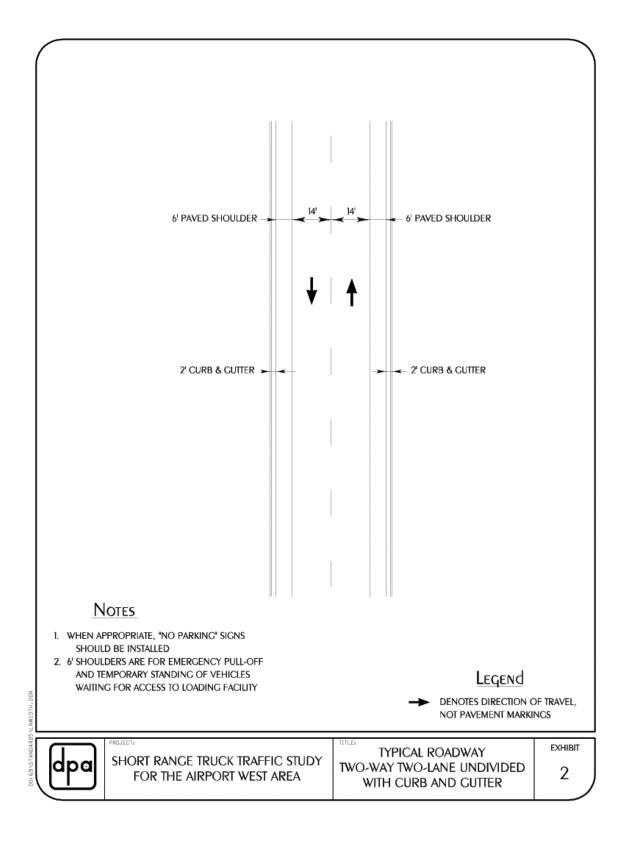
When designing horizontal curves to accommodate large trucks, it is important to select a realistic design speed and to consider overturning characteristics. On a minimum radius horizontal curve designed in accordance with current ASSHTO criteria, passenger cars will skid off the pavement before it rolls over. On dry pavement, however, a truck with a rollover threshold of 0.30g (a reasonable value for use in highway design) will roll over before it skids on a minimum radius curve. This indicates that in designing horizontal curves on high-speed roadways, it is important to select a realistic design speed to accommodate large trucks. This is especially important for interchange ramps, because trucks with a high center of gravity in certain situations can roll over when exceeding the design speed by as little as 5 mph.

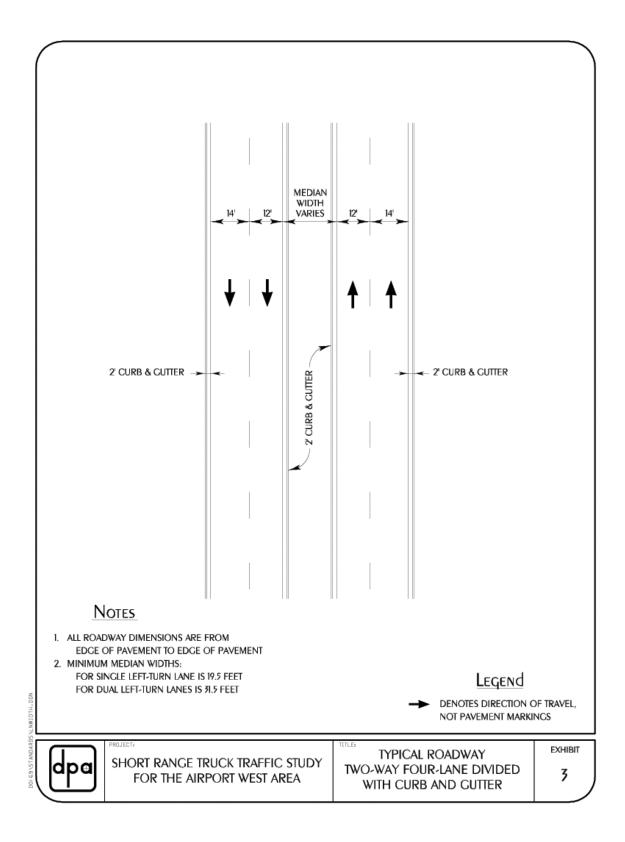
Vertical Alignment

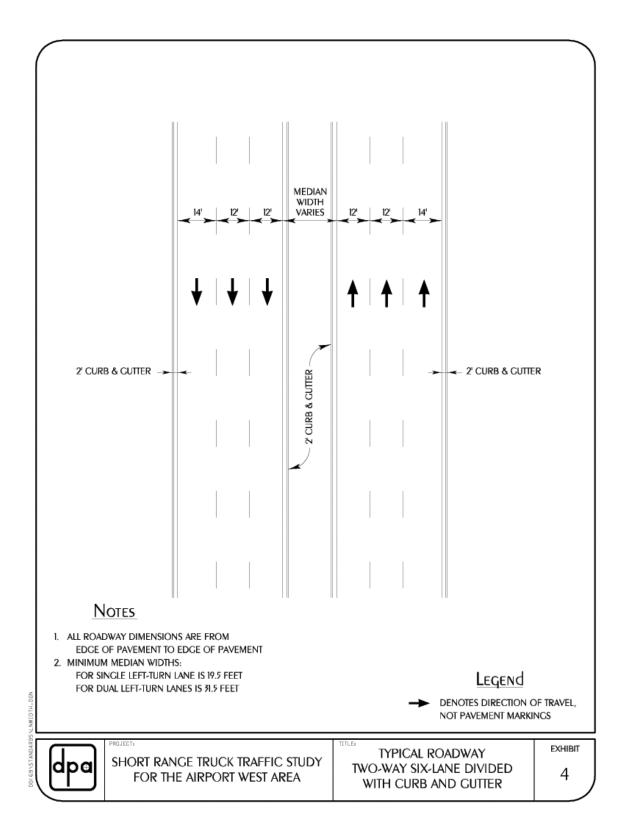
In order to accommodate trucks on crest vertical curves, designers need to consider truck driver eye height and braking system (conventional or antilock) in addition to the variables considered when designing for passenger cars. For the lower truck driver eye height (75 inches), AASHTO criteria would result in shorter vertical curve lengths than those required for trucks with conventional braking systems. With a truck driver eye height of 93-in., however, the AASHTO criteria result in vertical curves that are relatively close to those appropriate for trucks with conventional braking system.

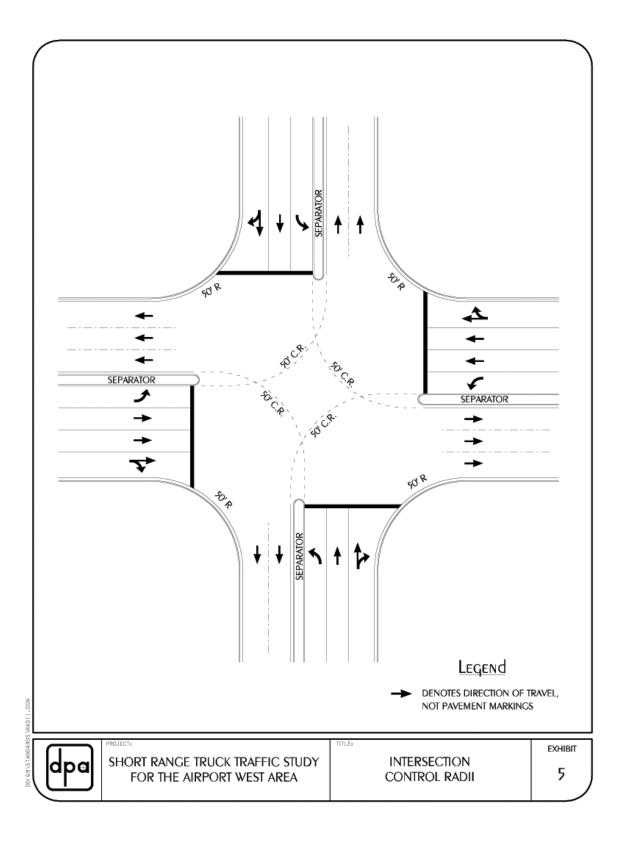
Intersection Design

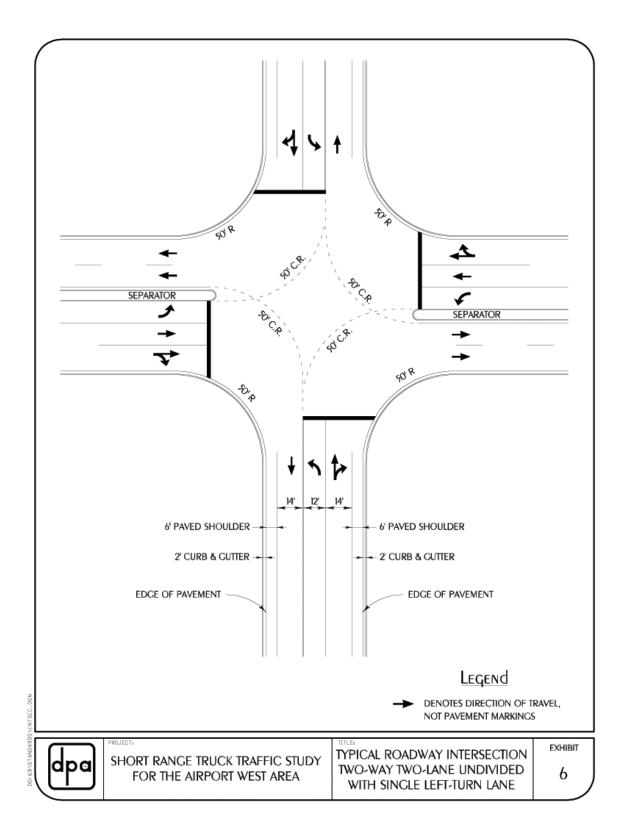
In the design of at-grade intersections to accommodate large trucks, designers need to provide adequate pavement width for turning vehicles and adequate sight distance. In order to provide a curb radius large enough so that trucks can make right turns without encroaching on adjacent lanes, however, the paved area of the intersection may become so large that through drivers might not know where to position their vehicles. If this happens, it is necessary to provide channelizing islands to properly control traffic.

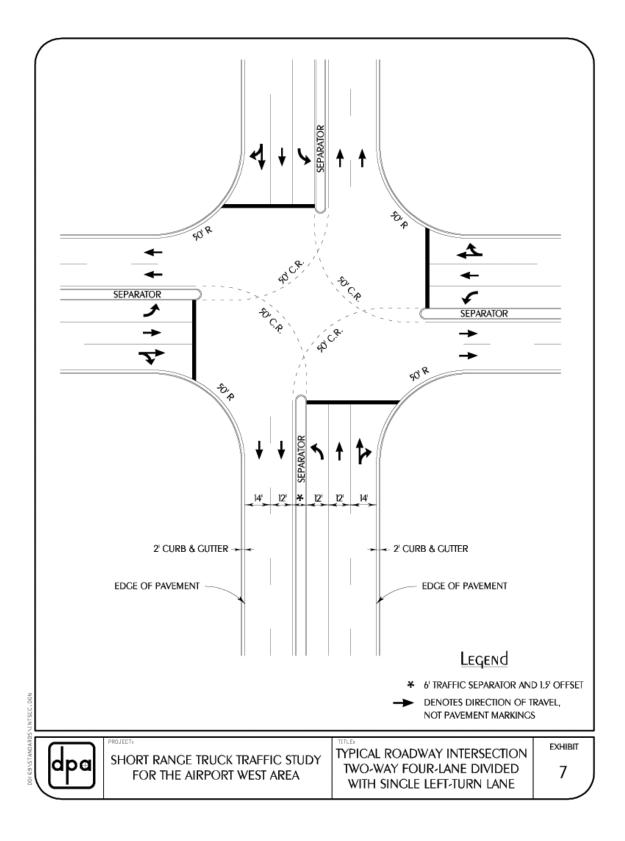

Because of their size and operating characteristics, trucks require longer intersection sight distances than do passenger cars. For example, the required sight distance for a 75-ft truck to make a left turn at a stop-controlled intersection where the design speed of the main roadway is 60 mph is 2,900 ft. It is clear from operational experience, however, that sight distances as long as 2,900 ft. are not necessary for safe operation at intersections. It is unlikely that drivers could accurately judge the location and speed of an oncoming vehicle at a distance of 2,900 ft. Existing procedures for calculating the required sight distance for large trucks at intersections do not realistically represent operations at an intersection.

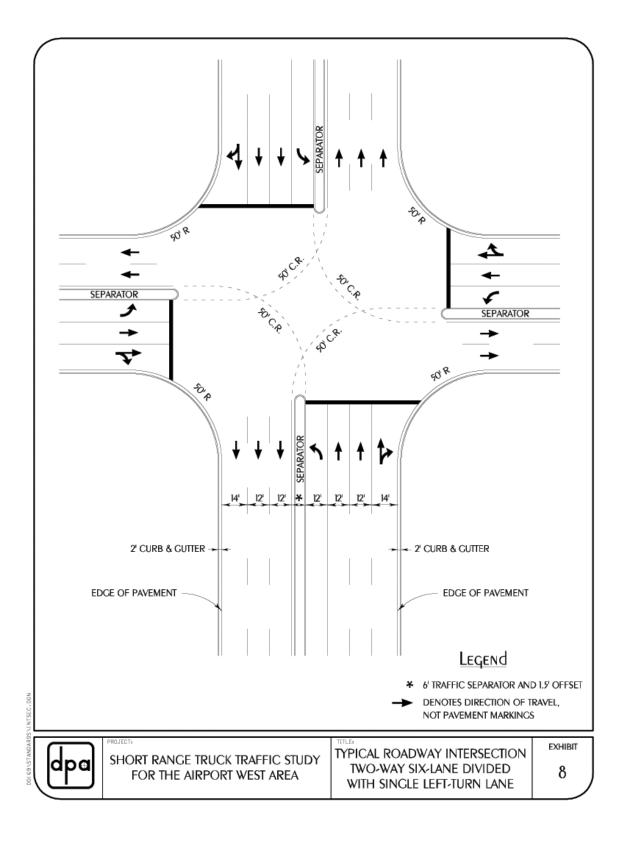

Sign Placement

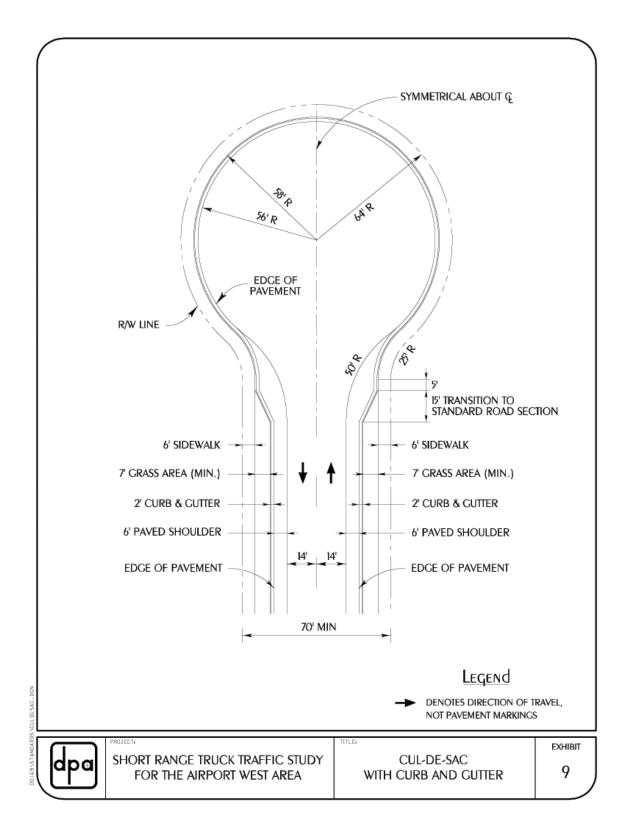

Because of their longer braking distance and lower deceleration capabilities, trucks influence the longitudinal placement of signs. Suggested deceleration distances are based on research that used different assumptions for pavement conditions, driver actions, and deceleration rates. The differences in assumptions need to be resolved before any policy changes based on the research efforts are considered.

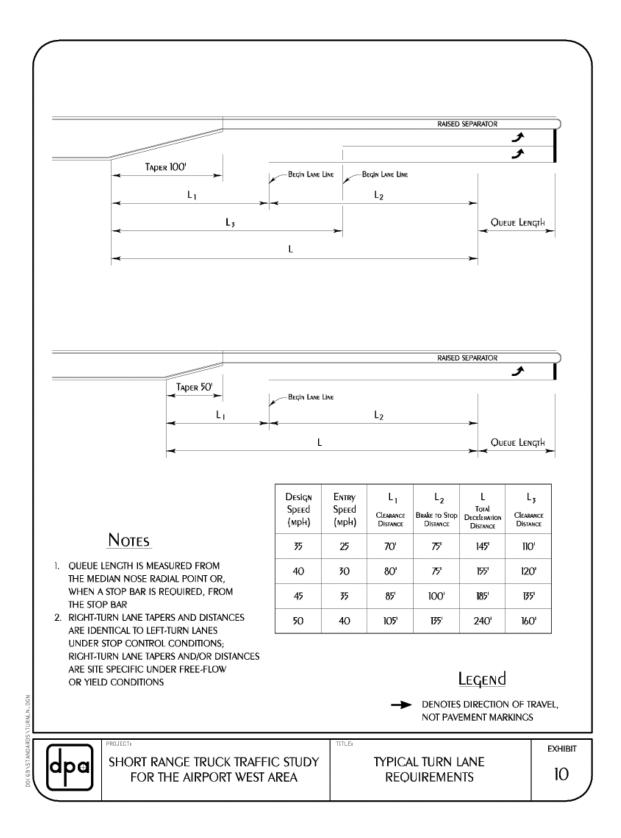

Exhibits for Design Standards

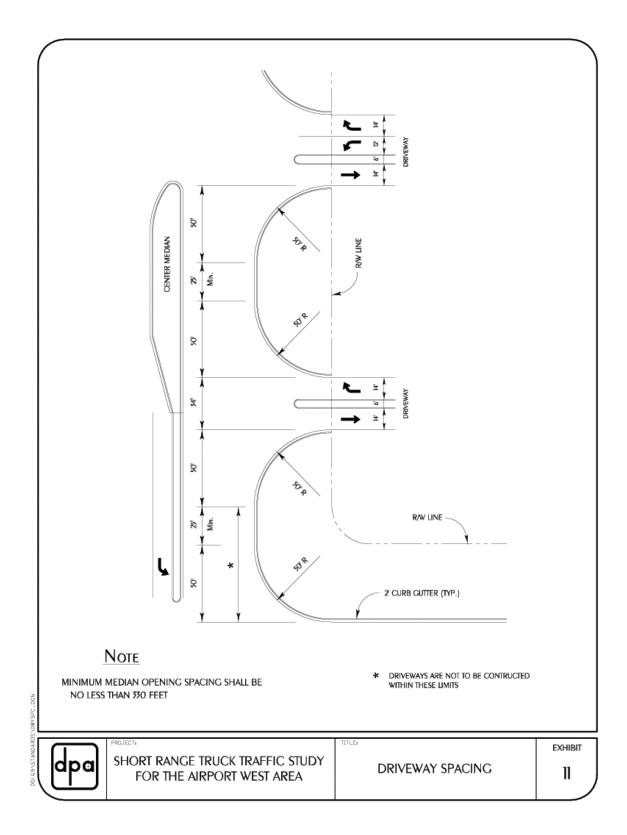


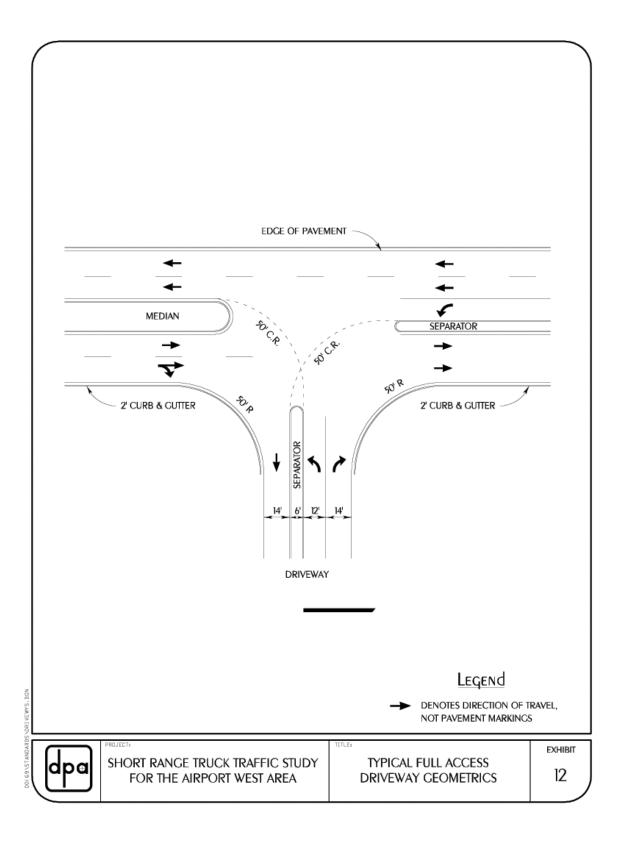


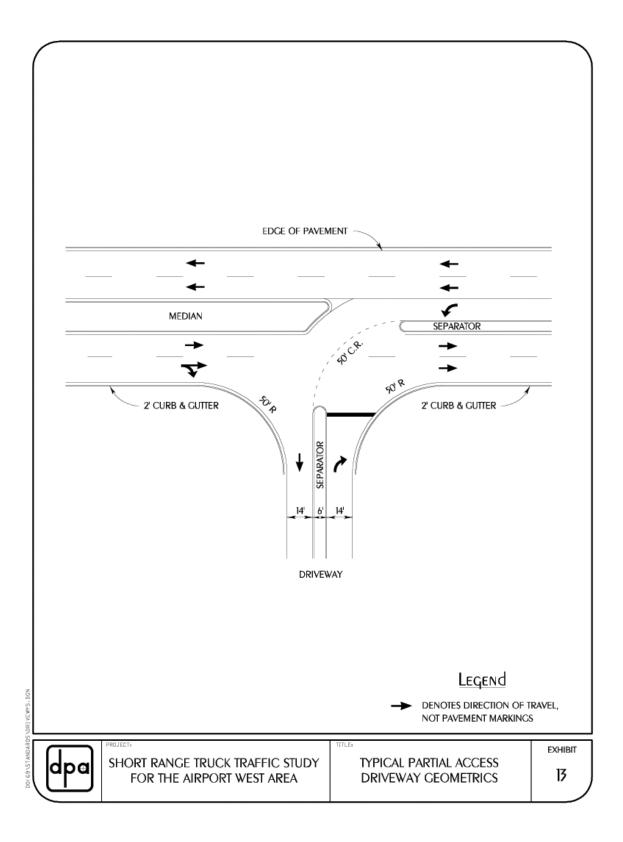


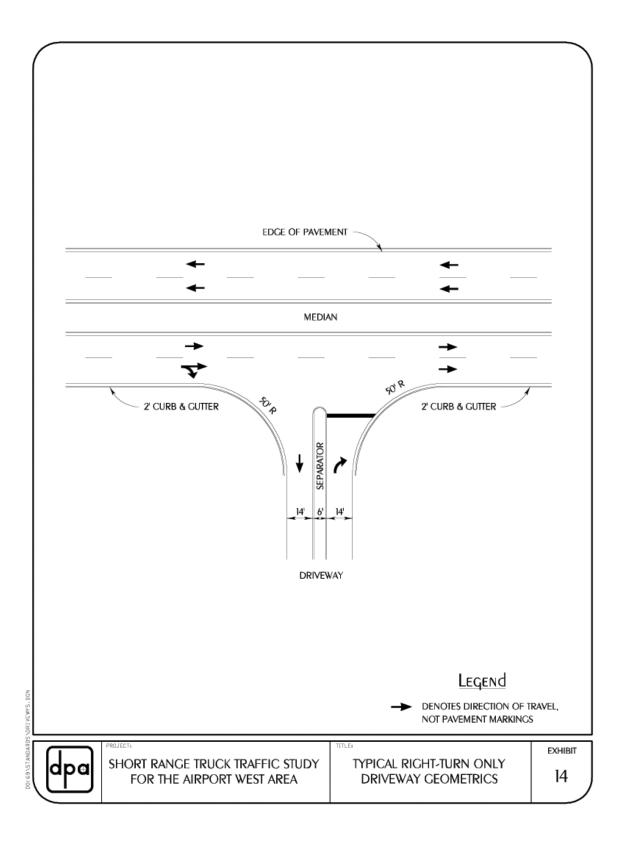












Appendix E Background Research

Summaries of Previous Studies

Miami-Dade County Freight Movement Study, MPO, 1996

- The AWA is one of the major generators of freight trips in Miami-Dade County.
- It includes the area between NW 72 Avenue and Florida's Turnpike, north of SR836 to NW 74 Street.
- Roadway segments which provide access to MIA and exceed acceptable levels of congestion are SR836, SR826, NW 12 Street, NW 25 Street, NW 21 Street and NW 72 Avenue.
- From the survey of truck carriers/organizations in Miami-Dade County, most respondents said traffic congestion, lack of parking, and rush-hour deliveries were the most problematic. (p. 3-54)
- At the steering committee workshop, representatives of public and private sector entities involved in freight movement stated that the design of some new roads does not consider trucks. Part of the reason for this is design standards are often pressed to make the highway system more pedestrian-friendly and, as a result, create problems for trucks and other large vehicles. (p. 3-58)
- Representatives from the Miami-Dade Aviation Department stated that the geometry of the roads west of the airport serving the warehouse and distribution center is very poor for trucks (they were designed for cars). Major redesign of most of the roads and intersections would be required for this to be a really effective freight transportation area. (p. 3-64)
- Many respondents of the mail-back survey said that a freight-only lane would be important. (p. 4-6)
- An O-D survey conducted at the Port of Miami, the FEC Hialeah Intermodal Yard and the Miami Free Trade Zone identified the following roads within the AWA as among the most traveled in the entire county: SR836, SR826, NW 25 Street, NW 74 Street, NW 72 Avenue, NW 36 Street, and NW 107 Avenue. (p. 4-8, 4-14)

Travel Demand Study Report, NW 25 Street PD&E Study, FDOT, 1997

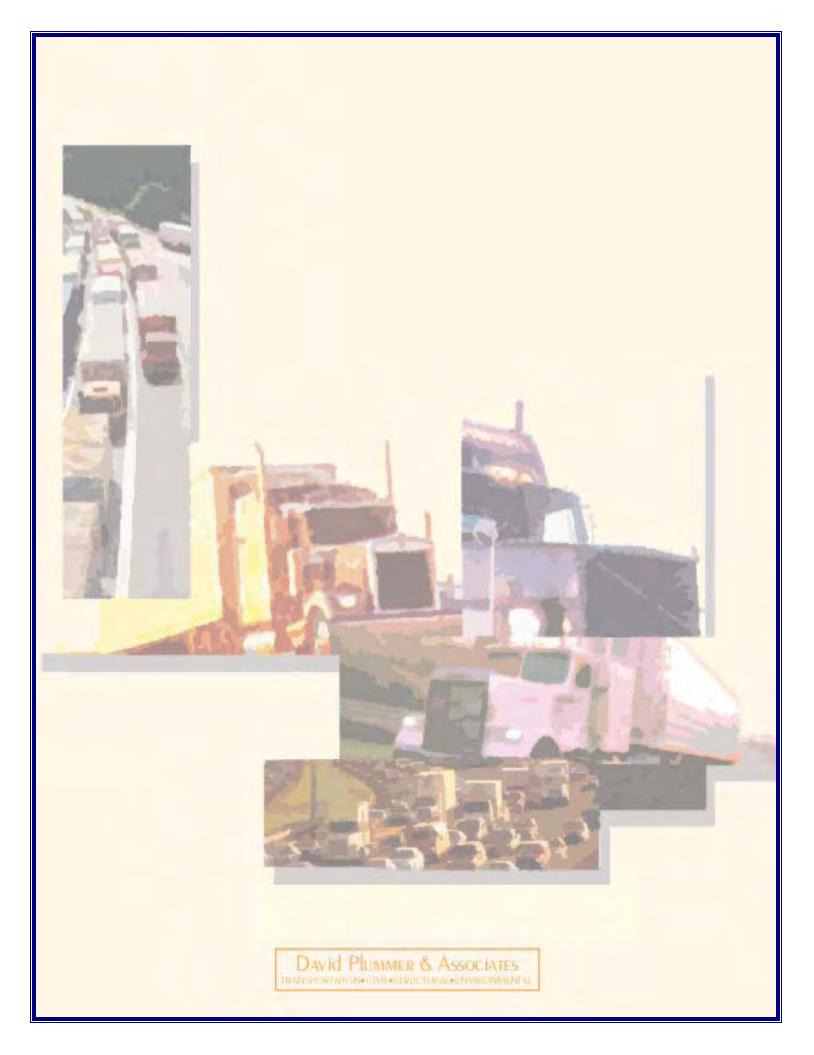
- NW 25 Street was identified as experiencing continuous socio-economic growth east and west of SR826. Traffic counts estimated that trucks account for 15 to 20% of the total number of vehicles without any decrease during the peak hours of the day. (p. 1-1)
- Traffic congestion along NW 25 Street is caused by the high presence of trucks and other factors including many traffic generators along the corridor, sub-standard lane widths and turning radii, absence of medians throughout majority of the roadway, poor access management, numerous traffic signals with relatively small distances between them, and train movements at four gate-controlled locations. (p. 1-1)
- The peak hour along NW 25 Street between NW 87 Avenue and NW 67 Avenue occurred at 1:00 pm. (p. 3-11)
- Truck factors (T-factors), representing truck traffic percentage in 24 hours, ranged from 10% to 20% along NW 25 Street (with lower percentages exhibited away from the airport periphery). (p. 3-6)
- Approximate T-factors on cross-streets (near NW 25 Street) were as follows: 6% on NW 87 Avenue; 9% on NW 72 Avenue; and 15% on NW 67 Avenue. (p. 3-7)
- Peak hour truck percentages (PHT), representing truck traffic percentage within the peak hour, ranged from 11% to 21% (with lower percentages exhibited away from the airport periphery). (p. 3-12)
- A traffic count of vehicles making a special U-turn movement on NW 25 Street from northbound NW 82 Avenue to southbound NW 84 Avenue was performed. The combined result of the AM, Midday, and PM peak hours are as follows: of the cars making a left-turn on northbound NW 82 Avenue, 13% made another left-turn at NW 84 Avenue; of the trucks making a left-turn on northbound NW 82 Avenue, 67% made another left-turn at NW 84 Avenue; and of all vehicles making a left-turn on northbound NW 82 Avenue, 26% made another left-turn at NW 84 Avenue. A connection between NW 82 Avenue and NW 84 Avenue on NW 21 Street, NW 17 Street, or NW 14 Street would relieve the traffic congestion on the segment of NW 25 Street between these two avenues as well as at both intersections. (p. 3-18)

- During a Travel Time and Delay Study, the least delays and highest travel speeds occurred during the AM peak period. The most delays and longest travel times were observed during the Midday peak period. (p. 3-25)
- Along NW 25 Street, from January to May of 1995, approximately 40% of crashed involved a truck. (p. 3-29)
- A Truck Origin-Destination (O-D) study was conducted in March 1996. Truck drivers traveling eastbound and westbound on NW 25 Street were interviewed while they were stopped during the red light at NW 82 Avenue and at NW 79 Avenue. At each station, truck drivers were asked their origin, the avenue they used to enter NW 25 Street, the avenue they would use to exit NW 25 Street, and their destination. About 1,400 interviews were conducted during the three peak periods (AM, Midday, and PM). Following is a summary of existing daily truck movements entering and exiting the airport periphery (east of NW 72 Avenue):

Entering:	57% were coming from west of SR-826
	11% were coming from north on SR-826
	3% were coming from south on SR-826
	29% were coming from east of SR-826
Exiting:	45% were going west of SR-826
	21% were going north on SR-826
	4% were going south on SR-826
	30% were going east of SR-826

(p. 5-1, 2-3, 5-10)

The recommended factors for future traffic projections on the NW 25 Street corridor are as follows: K₃₀-factor = 9.2%; D₃₀-factor = 55.8%; PHF = 0.95; T-factor = 15%; DHT = 15% (p. 6-4)


Preliminary Engineering Report, NW 25 Street PD&E Study, FDOT, 1998

- Design criteria for NW 25 Street includes 3.6-meter (12-foot) lanes with 6.0-meter median. Design criteria for the viaduct includes 4.5-meter (15-foot) lanes, 2.4-meter (8-foot) right shoulder and 1.2-meter (4-foot) left shoulder, with 0.6-meter barrier as a median separator. (p. 7-2)
- One study alternative included a combination of an elevated structure (viaduct) parallel to NW 25 Street with alternate connections to SR-826 and at-grade widening along NW 25 Street. A Tier 1 analysis was performed to determine the preferred connection of the viaduct to SR-826 and a Tier 2 analysis was performed to determine the preferred study alternative. (p. 8-1)
- In the Tier 1 analysis, the "Overpass with Slip Ramps" alternate ranked in first place and was selected as the preferred connection to SR-826. (p. 8-11)
- In the Tier 2 analysis, the Alternative B (Viaduct on the North Side and Widening of NW 25 Street to Six Lanes) was selected as the preferred alternative. (p. 8-49)
- See alignment and intersection concepts for at-grade widening (p. 9-1) and for viaduct (p. 9-6)
- The viaduct will facilitate vehicular traffic, particularly truck traffic, traveling to and from the west, the SR-826, and the airport periphery. This alternative will also alleviate traffic congestion on NW 25 Street by reducing non-local traffic using NW 25 Street. (p. 9-6)

Appendix F References

- 1. *A Toolbox for Alleviating Traffic Congestion*. Washington, DC: Institute of Transportation Engineers, 1989.
- 2. American Association of State Highway and Transportation Officials. *A policy on Geometric Design of Highways and Streets*. Washington, DC: AASHTO, 1990.
- 3. *Design Guidelines for Public Street Improvements*. "Traffic Design Criteria Section 5." http://www.trans.ci.portland.or.us/Engineering_And_Deveopment/DESI.../Sections5.htm
- 4. Federal Highway Administration. Manual on Uniform Traffic Control Devices. Washington, DC: FHWA, 1988.
- 5. Florida Department of Transportation: Dade County Metropolitan Planning Organization. *Low Cost Improvements Programs for Rush (Resourceful Use of Streets and Highways.* Miami, FL: August 1996.
- 6. Firestine, M., H. McGee, and P. Toeg. *Improving Truck Safety at Interchanges*. FHWA-IP-89-024, Washington, DC: Federal Highway Administration, September 1989.
- 7. Gillespie, T.D. "Start-Up Acceleration of Heavy Trucks on Grades." *Transportation Research Record 1052*. Washington, DC: Transportation Research Board, 1986.
- 8. Hall, J.W., J.P. Eicher, T.E. Klimek, and S.G. Strickland. *Symposium on Geometric Design for Large Trucks*. Washington, DC: Transportation Research Board, 1986.
- Harwood, D.W., J.M. Mason Jr., W.D. Glauz, B.T. Kulakowski, and K. Fitzpatrick. *Truck Characteristics for Use in Highway Design and Operation, Volume I: Research Report and Volume II: Appendices.* FHWA-RD-89-226 and FHWA-RD-89-227, Washington, DC: Federal Highway Administration, August 1990.
- 10. Harkey, David I., Forrest M. Council and Charles V. Zegeer. "Operational characteristics of longer combination vehicles and related geometric design issue". *Transportation research record 1523*. Washington, DC: Transportation Research Board, 1996.
- 11. Innovative use of ITS Technology reduces Pavement Damage and Improves Safety. Texas Transportation Institute, Review Feature Research. http://tti.tamu.edu/researcher/v37n2/innovative%5Fits.stm
- 12. Metropolitan Planning Organization, Dade County Mobility Management Process/Congestion Management System. Miami, FL: Metropolitan Planning Organization, 1996.
- 13. Transportation Research Board, *Providing Access for Large Trucks*. Special Report 223. Washington, DC: National Research Council, 1989.

- 14. *Trucks may get the Green Light in South Texas*. Texas Transportation Institute, Review Feature Research. http://tti.tamu.edu/researcher/v34n1/trucks.stm.
- 15. Volinski, Joel and Victoria Perk. Miami Surface Shuttle Services: Feasibility Study for Transit Circulator Services in Downtown Miami, Brickell, Overtown, and Airport West. Miami, FL: Miami-Dade Urbanized Area Metropolitan Planning Organization, June 2000.

