TRAFFIC SIGNS RESEARCH STUDY FOR MIAMI-DADE COUNTY

Brick

Pei-Sung Lin, Ph.D., P.E., P.T.O.E. lin@cutr.usf.edu

Biscayne Blvd

ONL

Palmetto Expy

Aldo Fabregas A. fabregas@cutr.usf.edu

Miami-Dade Metropolitan Planning Organization Center for Urban Transportation Research University of South Florida

Hurricane Activity

2004-2005 Hurricane Season

Background

A considerable proportion of traffic signs failed in the 2004-2005 season

Problem Description

Design Standards

AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaries and Traffic Signals 2001 includes provisions for hurricane winds

Increase Installation Depth

CUTR

Concrete Foundation

Drive Anchors

Conclusions and Recommendations

- Revise the local standards against the 2001 AASTHO standards and take the appropriate actions
- Design traffic signs capable of withstanding at least Category 1 hurricane wind which accounts for 90% of the scenarios for Miami-Dade County
- For the installation depth of 2 ft., the top two alternatives are concrete foundation and drive anchors
- The main advantage of drive anchors is that the installation time is significantly shorter than that required for concrete foundations
- If the installation depth is greater than 2 ft., then the selected two alternatives can perform better

Recommendations for Improvements

- Perform physical testing of the proposed alternatives. In the case of the drive anchors, testing 2, 3 or 4 anchor blades may be helpful
- Promote the regulations in the Utility Accommodation Manual which states that utilities should not be placed within 3 ft. of the right-of-way
- The purchase or rental of ground penetrating radars could be considered as an alternative to safely bypass the process of requesting horizontal clearance (verify with SSOCOF)
- The implementation of a GIS-based signage inventory will allow to relate sign failures with soil and wind data

Pei-Sung Lin, Ph.D., P.E., P.T.O.E.

Brick

10

ONL

90

100

BirdRd

Biscayne Blvd

ONLY

-Ee8:THIAVERO

Palmetto Expy

W 28TH A

50

EATH

IN ATH AVE

6

STOP

823

lin@cutr.usf.edu (813)974-4910, fax (813) 974-5168

Aldo Fabregas A.

fabregas@cutr.usf.edu (813)974-9819

Appendix

Soil Map

Charts for Installation Depth

Charts for Soil Plates

Charts for Concrete

Drive Anchor Picture

Cost Effectiveness Table

AASHTO Formulations

Hurricane Probabilities

Proposed Testing Procedure

Wall of wind

Miami-Dade Soil Survey

Charts

2

Charts

Soil plates in sand

Charts

Cost Effectiveness

Rank	Soil	Action	CE (mph/\$)	Rank	Soil	Action	CE (mph/\$)
1		Drive anchor 3ft	8.6	1		Drive anchor 3ft	4.5
2		Increase depth 4ft	3.8	2		Increase depth 4ft	2.0
3	Looce	Concrete 3ft	1.9	3	Weak	Concrete 3ft	1.0
4	LUUSE	Soil plate 3ft	1.8	4		Soil plate 3ft	1.0
5		Soil plate 2ft	1.2	5		Concrete 2ft	0.5
б		Concrete 2ft	1.0	б		Soil plate 2ft	0.5
1		Drive anchor 3ft	9.6	1		Drive anchor 3ft	б.4
2		Increase depth 4ft	4.5	2		Increase depth 4ft	2.9
3	Medium	Soil plate 3ft	2.2	3	Medium	Concrete 3ft	1.4
4		Concrete 3ft	2.1	4		Soil plate 3ft	1.4
5		Soil plate 2ft	1.4	5		Soil plate 2ft	0.8
б		Concrete 2ft	1.1	б		Concrete 2ft	0.7
1		Drive anchor 3ft	13.9	1		Drive anchor 3ft	9.6
2		Increase depth 4ft	6.3	2		Increase depth 4ft	3.5
3	Strong	Soil plate 3ft	3.4	3	Strong	Soil plate 3ft	2.2
4	-	Soil plate 2ft	3.3	4		Concrete 3ft	2.1
5		Concrete 3ft	3.0	5		Soil plate 2ft	1.7
б		Concrete 2ft	1.8	б		Concrete 2ft	1.2

Cost Effectiveness for signs in sand

Cost Effectiveness for signs in clay

AASHTO Parameters

$$\begin{split} P_z &= 0.613 K_z G V^2 I_r C_d \qquad (Pa) \\ P_z &= 0.00256 K_z G V^2 I_r C_d \qquad (psf) \end{split}$$

Where,

- V: Design wind speed at 10 m. (32.8 ft.)
- C_d : Drag coefficient
- G: Gust effect factor
- K_z : Height and exposure factor
- *I_r*: Wind importance factor

In summary, for street signs in the Miami-Dade case, Kz=0.87, G=1.14, V=150 mph Ir=0.71. The drag coefficient should be established for each sign type; for the regular stop sign with street name, the coefficient is 1.14.

Hurricane Probabilities

The probabilities for a hurricane to be category 1, 2, 3 or 4 are 37, 21, 26 and 16 percent, respectively, based on the information presented in Figure 9. Therefore, for the most likely scenario for Miami-Dade the probabilities of occurrence of hurricanes category 1, 2 3, and 4 or more are 5.6 (once every 10 years), 3.2 (once every 30 years), 4 (once every 25 years), and 2.4 percent (once every 40 years), respectively

Drive Anchor Picture

Proposed Testing Procedure

Center for Urban Transportation Research University of South Florida

Center for Urban Transportation Research University of South Florida

